Suppr超能文献

亚氨基二乙酸(IDA)生成的介孔纳米聚合物:一种与表面积、亲水性和糖肽富集相关的模板。

Iminodiacetic acid (IDA)-generated mesoporous nanopolymer: a template to relate surface area, hydrophilicity, and glycopeptides enrichment.

机构信息

Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.

Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia.

出版信息

Mikrochim Acta. 2021 Nov 11;188(12):417. doi: 10.1007/s00604-021-05074-8.

Abstract

A three-step strategy is introduced to develop inherent iminodiacetic (IDA)-functionalized nanopolymer. SEM micrographs show homogenous spherical beads with a particle size of 500 nm. Further modification to COOH-functionalized 1,2-epoxy-5-hexene/DVB mesoporous nanopolymer enriches glycopeptides via hydrophilic interactions followed by their MS determination. Significantly high BET surface area 433.4336 m g contributes to the improved surface hydrophilicity which is also shown by high concentration of ionizable carboxylic acids, 14.59 ± 0.25 mmol g. Measured surface area is the highest among DVB-based polymers and in general much higher in comparison to the previously reported BET surface areas of co-polymers, terpolymers, MOFs, and graphene-based composites. Thirty-one, 19, and 16 N-glycopeptides are enriched/identified by nanopolymer beads from tryptic digests of immunoglobulin G, horseradish peroxidase, and chicken avidin, respectively, without additional desalting steps. Material exhibits high selectivity (1:400 IgG:BSA), sensitivity (down to 0.1 fmol), regeneration ability up to three cycles, and batch-to-batch reproducibility (RSD > 1%). Furthermore, from 1 μL of digested human serum, 343 N-glycopeptide characteristics of 134 glycoproteins including 30 FDA-approved serum biomarkers are identified via nano-LC-MS/MS. The developed strategy to self-generate IDA on polymeric surface with improved surface area, porosity, and ordered morphology is insignia of its potential as chromatographic tool contributing to future developments in large-scale biomedical glycoproteomics studies.

摘要

引入了一种三步策略来开发固有亚氨基二乙酸(IDA)功能化纳米聚合物。SEM 显微照片显示均匀的球形珠,粒径为 500nm。进一步修饰 COOH 功能化的 1,2-环氧-5-己烯/DVB 介孔纳米聚合物通过亲水相互作用富集糖肽,然后通过 MS 测定。显著高的 BET 表面积 433.4336 m²/g 有助于提高表面亲水性,这也表现为可离解羧酸的高浓度,14.59±0.25mmol/g。测量的表面积是基于 DVB 的聚合物中最高的,并且通常比以前报道的共聚物、三聚物、MOF 和基于石墨烯的复合材料的 BET 表面积高得多。31、19 和 16 个 N-糖肽分别通过免疫球蛋白 G、辣根过氧化物酶和鸡亲和素的胰蛋白酶消化物从纳米聚合物珠中富集/鉴定,而无需额外的脱盐步骤。该材料表现出高选择性(1:400 IgG:BSA)、灵敏度(低至 0.1 fmol)、高达三个循环的再生能力以及批间重现性(RSD>1%)。此外,通过 nano-LC-MS/MS 从 1 μL 消化的人血清中鉴定出 134 种糖蛋白的 343 个 N-糖肽特征,包括 30 种 FDA 批准的血清生物标志物。在聚合物表面上自行生成 IDA 的策略具有改善的表面积、孔隙率和有序形态,这是其作为色谱工具的潜力的标志,有助于未来在大规模生物医学糖蛋白质组学研究中的发展。

相似文献

2
Hydrophilic Mesoporous Silica Materials for Highly Specific Enrichment of N-Linked Glycopeptide.
Anal Chem. 2017 Feb 7;89(3):1764-1771. doi: 10.1021/acs.analchem.6b04054. Epub 2017 Jan 18.
3
Boronic acid functionalized MOFs as HILIC material for N-linked glycopeptide enrichment.
Anal Bioanal Chem. 2020 Mar;412(7):1509-1520. doi: 10.1007/s00216-020-02427-9. Epub 2020 Jan 30.
4
Mapping the low abundant plasma glycoproteome using Ranachrome-5 immobilized magnetic terpolymer as improved HILIC sorbent.
J Chromatogr B Analyt Technol Biomed Life Sci. 2023 Jul 1;1227:123846. doi: 10.1016/j.jchromb.2023.123846. Epub 2023 Aug 4.
6
Hydrophilic arginine-functionalized mesoporous polydopamine-graphene oxide composites for glycopeptides analysis.
J Chromatogr B Analyt Technol Biomed Life Sci. 2022 Jan 15;1189:123049. doi: 10.1016/j.jchromb.2021.123049. Epub 2021 Nov 20.
7
Terpolymeric platform with enhanced hydrophilicity via cysteic acid for serum intact glycopeptide analysis.
Mikrochim Acta. 2022 Jul 13;189(8):277. doi: 10.1007/s00604-022-05343-0.
9
Facile synthesis of layered mesoporous covalent organic polymers for highly selective enrichment of N-glycopeptides.
Anal Chim Acta. 2019 May 30;1057:145-151. doi: 10.1016/j.aca.2018.12.063. Epub 2019 Jan 14.
10

引用本文的文献

本文引用的文献

1
Facile synthesis of magnetic covalent organic frameworks for the hydrophilic enrichment of N-glycopeptides.
J Mater Chem B. 2017 Jun 14;5(22):4052-4059. doi: 10.1039/c7tb00700k. Epub 2017 May 16.
3
Advances in hydrophilic nanomaterials for glycoproteomics.
Chem Commun (Camb). 2019 Aug 27;55(70):10359-10375. doi: 10.1039/c9cc04124a.
4
Characterization of Cell Glycocalyx with Mass Spectrometry Methods.
Cells. 2019 Aug 13;8(8):882. doi: 10.3390/cells8080882.
5
High Strength and Hydrophilic Chitosan Microspheres for the Selective Enrichment of N-Glycopeptides.
Anal Chem. 2017 Sep 19;89(18):9712-9721. doi: 10.1021/acs.analchem.7b01283. Epub 2017 Aug 31.
6
Porous Copolymer Resins: Tuning Pore Structure and Surface Area with Non Reactive Porogens.
Nanomaterials (Basel). 2012 Jun 6;2(2):163-186. doi: 10.3390/nano2020163.
7
Efficient enrichment of glycopeptides with sulfonic acid-functionalized mesoporous silica.
Talanta. 2016 Dec 1;161:681-685. doi: 10.1016/j.talanta.2016.09.012. Epub 2016 Sep 5.
8
Diethylaminoethyl Sepharose (DEAE-Sepharose) microcolumn for enrichment of glycopeptides.
Anal Bioanal Chem. 2017 Jan;409(2):511-518. doi: 10.1007/s00216-016-9937-6. Epub 2016 Sep 27.
9
Dipeptide-Based Carbohydrate Receptors and Polymers for Glycopeptide Enrichment and Glycan Discrimination.
ACS Appl Mater Interfaces. 2016 Aug 31;8(34):22084-92. doi: 10.1021/acsami.6b07863. Epub 2016 Aug 16.
10
Hydrogen-bond interaction assisted branched copolymer HILIC material for separation and N-glycopeptides enrichment.
Talanta. 2016 Sep 1;158:361-367. doi: 10.1016/j.talanta.2016.05.034. Epub 2016 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验