文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用无标签数据和知识蒸馏对糖尿病性视网膜病变进行分类。

Classification of diabetic retinopathy using unlabeled data and knowledge distillation.

机构信息

Department of Electrical and Computer Engineering, Isfahan University of Technology, 84156-8311, Iran.

Computer Science Department, Seattle University, Seattle 98122, USA.

出版信息

Artif Intell Med. 2021 Nov;121:102176. doi: 10.1016/j.artmed.2021.102176. Epub 2021 Sep 17.


DOI:10.1016/j.artmed.2021.102176
PMID:34763798
Abstract

Over the last decade, advances in Machine Learning and Artificial Intelligence have highlighted their potential as a diagnostic tool in the healthcare domain. Despite the widespread availability of medical images, their usefulness is severely hampered by a lack of access to labeled data. For example, while Convolutional Neural Networks (CNNs) have emerged as an essential analytical tool in image processing, their impact is curtailed by training limitations due to insufficient labeled data availability. Transfer Learning enables models developed for one task to be reused for a second task. Knowledge distillation enables transferring knowledge from a pre-trained model to another. However, it suffers from limitations, and the two models' constraints need to be architecturally similar. Knowledge distillation addresses some of the shortcomings of transfer learning by generalizing a complex model to a lighter model. However, some parts of the knowledge may not be distilled by knowledge distillation sufficiently. In this paper, a novel knowledge distillation approach using transfer learning is proposed. The proposed approach transfers the complete knowledge of a model to a new smaller one. Unlabeled data are used in an unsupervised manner to transfer the new smaller model's maximum amount of knowledge. The proposed method can be beneficial in medical image analysis, where labeled data are typically scarce. The proposed approach is evaluated in classifying images for diagnosing Diabetic Retinopathy on two publicly available datasets, including Messidor and EyePACS. Simulation results demonstrate that the approach effectively transfers knowledge from a complex model to a lighter one. Furthermore, experimental results illustrate that different small models' performance is improved significantly using unlabeled data and knowledge distillation.

摘要

在过去的十年中,机器学习和人工智能的进步凸显了它们作为医疗保健领域诊断工具的潜力。尽管医疗图像广泛可用,但由于缺乏标记数据,它们的用途受到严重限制。例如,虽然卷积神经网络 (CNN) 已成为图像处理的重要分析工具,但由于缺乏标记数据,其训练受到限制,因此其影响受到限制。迁移学习使为一个任务开发的模型可用于第二个任务。知识蒸馏可以将来自预训练模型的知识转移到另一个模型中。但是,它存在局限性,并且两个模型的约束条件需要在架构上相似。知识蒸馏通过将复杂模型泛化到较轻的模型来解决迁移学习的一些缺点。然而,知识蒸馏可能无法充分提炼某些部分的知识。在本文中,提出了一种使用迁移学习的新的知识蒸馏方法。该方法将模型的完整知识转移到新的较小模型中。使用无监督的方式使用未标记的数据来转移新的较小模型的最大知识量。该方法在医学图像分析中可能很有用,因为在医学图像分析中,标记数据通常很少。在两个公开可用的数据集上,包括 Messidor 和 EyePACS,对所提出的方法进行了分类图像以诊断糖尿病视网膜病变的评估。模拟结果表明,该方法可以有效地将知识从复杂模型转移到较轻的模型。此外,实验结果表明,使用未标记的数据和知识蒸馏可以显著提高不同小模型的性能。

相似文献

[1]
Classification of diabetic retinopathy using unlabeled data and knowledge distillation.

Artif Intell Med. 2021-11

[2]
Resolution-based distillation for efficient histology image classification.

Artif Intell Med. 2021-9

[3]
Clinician-Driven AI: Code-Free Self-Training on Public Data for Diabetic Retinopathy Referral.

JAMA Ophthalmol. 2023-11-1

[4]
Contrastive self-supervised learning for diabetic retinopathy early detection.

Med Biol Eng Comput. 2023-9

[5]
Study of the Application of Deep Convolutional Neural Networks (CNNs) in Processing Sensor Data and Biomedical Images.

Sensors (Basel). 2019-8-17

[6]
Contrastive learning-based pretraining improves representation and transferability of diabetic retinopathy classification models.

Sci Rep. 2023-4-13

[7]
Simple methods for the lesion detection and severity grading of diabetic retinopathy by image processing and transfer learning.

Comput Biol Med. 2021-10

[8]
Novel Transfer Learning Approach for Medical Imaging with Limited Labeled Data.

Cancers (Basel). 2021-3-30

[9]
Knowledge distillation circumvents nonlinearity for optical convolutional neural networks.

Appl Opt. 2022-3-20

[10]
Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.

JAMA. 2016-12-13

引用本文的文献

[1]
Stepwise self-knowledge distillation for skin lesion image classification.

Sci Rep. 2025-7-12

[2]
Transformer attention fusion for fine grained medical image classification.

Sci Rep. 2025-7-1

[3]
Research on ultrasound-based radiomics: a bibliometric analysis.

Quant Imaging Med Surg. 2024-7-1

[4]
Knowledge distillation with ensembles of convolutional neural networks for medical image segmentation.

J Med Imaging (Bellingham). 2022-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索