Suppr超能文献

一种使用耳部生物特征识别进行人员身份识别的深度学习方法。

A deep learning approach for person identification using ear biometrics.

作者信息

Ahila Priyadharshini Ramar, Arivazhagan Selvaraj, Arun Madakannu

机构信息

Centre for Image Processing and Pattern Recognition, Mepco Schlenk Engineering College, Sivakasi, India.

出版信息

Appl Intell (Dordr). 2021;51(4):2161-2172. doi: 10.1007/s10489-020-01995-8. Epub 2020 Oct 28.

Abstract

Automatic person identification from ear images is an active field of research within the biometric community. Similar to other biometrics such as face, iris and fingerprints, ear also has a large amount of specific and unique features that allow for person identification. In this current worldwide outbreak of COVID-19 situation, most of the face identification systems fail due to the mask wearing scenario. The human ear is a perfect source of data for passive person identification as it does not involve the cooperativeness of the human whom we are trying to recognize and the structure of ear does not change drastically over time. Acquisition of a human ear is also easy as the ear is visible even in the mask wearing scenarios. Ear biometric system can complement the other biometric systems in automatic human recognition system and provides identity cues when the other system information is unreliable or even unavailable. In this work, we propose a six layer deep convolutional neural network architecture for ear recognition. The potential efficiency of the deep network is tested on IITD-II ear dataset and AMI ear dataset. The deep network model achieves a recognition rate of 97.36% and 96.99% for the IITD-II dataset and AMI dataset respectively. The robustness of the proposed system is validated in uncontrolled environment using AMI Ear dataset. This system can be useful in identifying persons in a massive crowd when combined with a proper surveillance system.

摘要

基于耳部图像的自动身份识别是生物识别领域中一个活跃的研究方向。与面部、虹膜和指纹等其他生物特征识别类似,耳朵也具有大量独特的特征,可用于身份识别。在当前全球新冠疫情爆发的情况下,由于人们佩戴口罩,大多数面部识别系统都无法正常工作。人耳是被动身份识别的理想数据来源,因为它不需要被识别者的配合,而且耳朵的结构不会随时间发生剧烈变化。即使在佩戴口罩的情况下,耳朵也清晰可见,因此获取耳部图像很容易。耳部生物识别系统可以在自动人体识别系统中补充其他生物识别系统,并在其他系统信息不可靠甚至无法获取时提供身份线索。在这项工作中,我们提出了一种用于耳部识别的六层深度卷积神经网络架构。该深度网络的潜在效率在IITD-II耳部数据集和AMI耳部数据集上进行了测试。该深度网络模型在IITD-II数据集和AMI数据集上的识别率分别达到了97.36%和96.99%。使用AMI耳部数据集在非受控环境中验证了所提出系统的鲁棒性。当与适当的监控系统结合使用时,该系统可用于在大量人群中识别人员。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fdd/7594944/28f77ba3540c/10489_2020_1995_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验