Suppr超能文献

一种基于综合调查和深度学习的耳部生物特征人体识别方法。

A comprehensive survey and deep learning-based approach for human recognition using ear biometric.

作者信息

Kamboj Aman, Rani Rajneesh, Nigam Aditya

机构信息

National Institute of Technology Jalandhar, Jalandhar, Punjab 144011 India.

Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005 India.

出版信息

Vis Comput. 2022;38(7):2383-2416. doi: 10.1007/s00371-021-02119-0. Epub 2021 Apr 22.

Abstract

Human recognition systems based on biometrics are much in demand due to increasing concerns of security and privacy. The human ear is unique and useful for recognition. It offers numerous advantages over popular biometrics traits face, iris, and fingerprints. A lot of work has been attributed to ear biometric, and the existing methods have achieved remarkable success over constrained databases. However, in unconstrained environment, a significant level of difficulty is observed as the images experience various challenges. In this paper, we first have provided a comprehensive survey on ear biometric using a novel taxonomy. The survey includes in-depth details of databases, performance evaluation parameters, and existing approaches. We have introduced a new database, NITJEW, for evaluation of unconstrained ear detection and recognition. A modified deep learning models Faster-RCNN and VGG-19 are used for ear detection and ear recognition tasks, respectively. The benchmark comparative assessment of our database is performed with six existing popular databases. Lastly, we have provided insight into open-ended research problems worth examining in the near future. We hope that our work will be a stepping stone for new researchers in ear biometrics and helpful for further development.

摘要

由于对安全和隐私的担忧日益增加,基于生物识别技术的人体识别系统需求很大。人耳具有独特性且适用于识别。与面部、虹膜和指纹等流行的生物特征相比,它具有许多优势。许多工作都致力于耳部生物识别,并且现有方法在受限数据库上取得了显著成功。然而,在非受限环境中,由于图像会遇到各种挑战,因此存在很大难度。在本文中,我们首先使用一种新颖的分类法对耳部生物识别进行了全面的综述。该综述包括数据库的详细信息、性能评估参数和现有方法。我们引入了一个新的数据库NITJEW,用于评估非受限耳部检测和识别。改进后的深度学习模型Faster-RCNN和VGG-19分别用于耳部检测和耳部识别任务。我们的数据库与六个现有的流行数据库进行了基准比较评估。最后,我们深入探讨了在不久的将来值得研究的开放性研究问题。我们希望我们的工作将成为耳部生物识别新研究人员的垫脚石,并有助于进一步发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90cf/8061142/2ab9cbb52446/371_2021_2119_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验