Suppr超能文献

相互依存的水和交通基础设施的预测恢复力数据:一种社会技术方法。

Data on predictive resilience of interdependent water and transportation infrastructures: A sociotechnical approach.

作者信息

Aslani Babak, Mohebbi Shima

机构信息

Department of Systems Engineering and Operations Research, George Mason University, Fairfax, VA USA.

出版信息

Data Brief. 2021 Oct 27;39:107512. doi: 10.1016/j.dib.2021.107512. eCollection 2021 Dec.

Abstract

Interdependent infrastructure systems are vulnerable to the cascading effect of failures resulting from random failures and natural disasters. The data provided in this work is the processed data used for the proposed resilience assessment framework for interdependent water and transportation networks dealing with both types of failure [1]. The case study is the interconnected networks of water and transportation in Tampa, Florida. The data for the random failure is obtained from the developed algorithmic framework and the land use and social vulnerability data provided by the U.S. Census datasets. We then used a subset of this produced data to construct predictive models for the network resilience to random failures. As for the natural disaster scenario, we focused on hurricane Irma in 2017 as it directly affected the focused region in Florida. We used the specific guidelines and the raw flooding data for this hurricane, provided by FEMA, to estimate the standing water for each geographical area (polygons) and the associated network components. We labeled the areas as failed and undamaged based on the estimated water levels. Finally, we used this data for developing a geospatial Geographical Weighted Regression (GWR) model to predict the resilience in each polygon. We present the final dataset for water and transportation networks to facilitate reusability for any future resilience study in the selected urban area.

摘要

相互依存的基础设施系统容易受到随机故障和自然灾害导致的故障连锁效应的影响。本研究提供的数据是用于所提出的针对相互依存的水和交通网络的恢复力评估框架的处理后的数据,该框架应对这两种类型的故障[1]。案例研究是佛罗里达州坦帕市的水和交通互联网络。随机故障的数据来自所开发的算法框架以及美国人口普查数据集提供的土地利用和社会脆弱性数据。然后,我们使用这些生成数据的一个子集来构建网络对随机故障的恢复力预测模型。至于自然灾害情况,我们聚焦于2017年的飓风“厄玛”,因为它直接影响了佛罗里达州的重点区域。我们使用联邦紧急事务管理局提供的针对这场飓风的具体指南和原始洪水数据,来估计每个地理区域(多边形)的积水情况以及相关的网络组件。我们根据估计的水位将这些区域标记为故障区域和未受损区域。最后,我们使用这些数据来开发一个地理空间地理加权回归(GWR)模型,以预测每个多边形的恢复力。我们展示水和交通网络的最终数据集,以便于在选定的城市区域进行任何未来的恢复力研究时可重复使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba50/8570939/438da84efcd4/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验