Suppr超能文献

具有化学修饰垂直排列金纳米线的机械门控电化学离子通道。

Mechanically-gated electrochemical ionic channels with chemically modified vertically aligned gold nanowires.

作者信息

Zhai Qingfeng, Wang Ren, Lyu Quanxia, Liu Yiyi, Yap Lim Wei, Gong Shu, Cheng Wenlong

机构信息

Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia.

New Horizon Research Centre, Monash University, Clayton, VIC 3800, Australia.

出版信息

iScience. 2021 Oct 16;24(11):103307. doi: 10.1016/j.isci.2021.103307. eCollection 2021 Nov 19.

Abstract

Mechanically-gated ion channels play an important role in the human body, whereas it is challenging to design artificial mechanically-controlled ionic transport devices as the intrinsically rigidity of traditional electrodes. Here, we report on a mechanically-gated electrochemical channel by virtue of vertically aligned gold nanowires (v-AuNWs) as 3D stretchable electrodes. By surface modification with a self-assembled 1-Dodecanethiol monolayer, the v-AuNWs become hydrophobic and inaccessible to hydrated redox species (e.g., and ). Under mechanical strains, the closely-packed v-AuNWs unzip/crack to generate ionic channels to enable redox reactions, giving rise to increases in Faradaic currents. The redox current increases with the strain level until it reaches a certain threshold value, and then decreases as the strain-induced conductivity decreases. The good reversible "on-off" behaviors for multiple cycles were also demonstrated. The results presented demonstrate a new strategy to control redox reactions simply by tensile strain, indicating the potential applications in future soft smart mechanotransduction devices.

摘要

机械门控离子通道在人体中起着重要作用,然而,由于传统电极固有的刚性,设计人工机械控制的离子传输装置具有挑战性。在此,我们报道了一种借助垂直排列的金纳米线(v-AuNWs)作为三维可拉伸电极的机械门控电化学通道。通过用自组装的1-十二烷硫醇单分子层进行表面修饰,v-AuNWs变得疏水,水合氧化还原物种(如 和 )无法进入。在机械应变下,紧密排列的v-AuNWs拉开/破裂以产生离子通道,从而实现氧化还原反应,导致法拉第电流增加。氧化还原电流随应变水平增加,直至达到某个阈值,然后随着应变诱导的电导率降低而减小。还展示了多个循环中良好的可逆“开-关”行为。所呈现的结果展示了一种仅通过拉伸应变来控制氧化还原反应的新策略,表明其在未来软智能机械转导装置中的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ee8/8571725/b85537a02a84/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验