Gao Junyu, Han Tao, Yuan Yuan, Wang Qi
IEEE Trans Neural Netw Learn Syst. 2023 Aug;34(8):4803-4815. doi: 10.1109/TNNLS.2021.3124272. Epub 2023 Aug 4.
Recently, crowd counting using supervised learning achieves a remarkable improvement. Nevertheless, most counters rely on a large amount of manually labeled data. With the release of synthetic crowd data, a potential alternative is transferring knowledge from them to real data without any manual label. However, there is no method to effectively suppress domain gaps and output elaborate density maps during the transferring. To remedy the above problems, this article proposes a domain-adaptive crowd counting (DACC) framework, which consists of a high-quality image translation and density map reconstruction. To be specific, the former focuses on translating synthetic data to realistic images, which prompts the translation quality by segregating domain-shared/independent features and designing content-aware consistency loss. The latter aims at generating pseudo labels on real scenes to improve the prediction quality. Next, we retrain a final counter using these pseudo labels. Adaptation experiments on six real-world datasets demonstrate that the proposed method outperforms the state-of-the-art methods.
最近,使用监督学习进行人群计数取得了显著进展。然而,大多数计数方法依赖大量人工标注数据。随着合成人群数据的发布,一种潜在的替代方法是在无需任何人工标注的情况下将知识从合成数据转移到真实数据。然而,在转移过程中,没有方法能有效抑制域差距并输出精细的密度图。为解决上述问题,本文提出了一种域自适应人群计数(DACC)框架,它由高质量图像翻译和密度图重建组成。具体而言,前者专注于将合成数据翻译为逼真图像,通过分离域共享/独立特征并设计内容感知一致性损失来提升翻译质量。后者旨在在真实场景上生成伪标签以提高预测质量。接下来,我们使用这些伪标签重新训练一个最终的计数模型。在六个真实世界数据集上的适应性实验表明,所提方法优于现有最先进方法。