Suppr超能文献

基于一项真实生活前瞻性多中心研究(PREDIBACK)和机器学习技术,致力于改善脊柱手术后持续性脊柱疼痛综合征患者疼痛整体评估的新型多维临床反应指数

A Novel Multi-Dimensional Clinical Response Index Dedicated to Improving Global Assessment of Pain in Patients with Persistent Spinal Pain Syndrome after Spinal Surgery, Based on a Real-Life Prospective Multicentric Study (PREDIBACK) and Machine Learning Techniques.

作者信息

Rigoard Philippe, Ounajim Amine, Goudman Lisa, Louis Pierre-Yves, Slaoui Yousri, Roulaud Manuel, Naiditch Nicolas, Bouche Bénédicte, Page Philippe, Lorgeoux Bertille, Baron Sandrine, Charrier Elodie, Poupin Laure, Rannou Delphine, de Montgazon Géraldine Brumauld, Roy-Moreau Brigitte, Grimaud Nelly, Adjali Nihel, Nivole Kevin, Many Mathilde, David Romain, Wood Chantal, Rigoard Raphael, Moens Maarten, Billot Maxime

机构信息

PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France.

Department of Spine Surgery & Neuromodulation, Poitiers University Hospital, 86021 Poitiers, France.

出版信息

J Clin Med. 2021 Oct 24;10(21):4910. doi: 10.3390/jcm10214910.

Abstract

The multidimensionality of chronic pain forces us to look beyond isolated assessment such as pain intensity, which does not consider multiple key parameters, particularly in post-operative Persistent Spinal Pain Syndrome (PSPS-T2) patients. Our ambition was to produce a novel Multi-dimensional Clinical Response Index (MCRI), including not only pain intensity but also functional capacity, anxiety-depression, quality of life and quantitative pain mapping, the objective being to achieve instantaneous assessment using machine learning techniques. Two hundred PSPS-T2 patients were enrolled in the real-life observational prospective PREDIBACK study with 12-month follow-up and received various treatments. From a multitude of questionnaires/scores, specific items were combined, as exploratory factor analyses helped to create a single composite MCRI; using pairwise correlations between measurements, it appeared to more accurately represent all pain dimensions than any previous classical score. It represented the best compromise among all existing indexes, showing the highest sensitivity/specificity related to Patient Global Impression of Change (PGIC). Novel composite indexes could help to refine pain assessment by informing the physician's perception of patient condition on the basis of objective and holistic metrics, and also by providing new insights regarding therapy efficacy/patient outcome assessments, before ultimately being adapted to other pathologies.

摘要

慢性疼痛的多维性迫使我们超越诸如疼痛强度等孤立的评估方法,因为这种方法没有考虑多个关键参数,尤其是在术后持续性脊柱疼痛综合征(PSPS-T2)患者中。我们的目标是创建一个新的多维临床反应指数(MCRI),不仅包括疼痛强度,还包括功能能力、焦虑抑郁、生活质量和定量疼痛图谱,目的是使用机器学习技术实现即时评估。200名PSPS-T2患者参加了具有12个月随访期的真实观察性前瞻性PREDIBACK研究,并接受了各种治疗。通过探索性因素分析,将众多问卷/评分中的特定项目进行组合,从而创建了一个单一的综合MCRI;通过测量之间的成对相关性,它似乎比以往任何经典评分都能更准确地反映所有疼痛维度。它代表了所有现有指数中的最佳折衷方案,显示出与患者整体变化印象(PGIC)相关的最高敏感性/特异性。新的综合指数可以通过基于客观和整体指标告知医生对患者状况的认知,以及通过提供有关治疗效果/患者结果评估的新见解,来帮助完善疼痛评估,最终适用于其他病症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/847e/8585086/1d79a25f0d96/jcm-10-04910-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验