Stocker Gerald, Spettel Jasmin, Dao Thang Duy, Tortschanoff Andreas, Jannesari Reyhaneh, Pühringer Gerald, Saeidi Parviz, Dubois Florian, Fleury Clement, Consani Cristina, Grille Thomas, Aschauer Elmar, Jakoby Bernhard
Infineon Technologies Austria AG, 9500 Villach, Austria.
Silicon Austria Labs GmbH, 9524 Villach, Austria.
Sensors (Basel). 2021 Oct 21;21(21):6993. doi: 10.3390/s21216993.
In this study, we investigate the potential of one-dimensional plasmonic grating structures to serve as a platform for, e.g., sensitive refractive index sensing. This is achieved by comparing numerical simulations to experimental results with respect to the excitation of surface plasmon polaritons (SPPs) in the mid-infrared region. The samples, silver-coated poly-silicon gratings, cover different grating depths in the range of 50 nm-375 nm. This variation of the depth, at a fixed grating geometry, allows the active tuning of the bandwidth of the SPP resonance according to the requirements of particular applications. The experimental setup employs a tunable quantum cascade laser (QCL) and allows the retrieval of angle-resolved experimental wavelength spectra to characterize the wavelength and angle dependence of the SPP resonance of the specular reflectance. The experimental results are in good agreement with the simulations. As a tendency, shallower gratings reveal narrower SPP resonances in reflection. In particular, we report on 2.9 nm full width at half maximum (FWHM) at a wavelength of 4.12 µm and a signal attenuation of 21%. According to a numerical investigation with respect to a change of the refractive index of the dielectric above the grating structure, a spectral shift of 4122nmRIU can be expected, which translates to a figure of merit (FOM) of about 1421 RIU-1. The fabrication of the suggested structures is performed on eight-inch silicon substrates, entirely accomplished within an industrial fabrication environment using standard microfabrication processes. This in turn represents a decisive step towards plasmonic sensor technologies suitable for semiconductor mass-production.
在本研究中,我们探究了一维等离子体光栅结构作为例如灵敏折射率传感平台的潜力。这是通过将关于中红外区域表面等离激元极化激元(SPP)激发的数值模拟与实验结果进行比较来实现的。样品为镀银多晶硅光栅,涵盖50纳米至375纳米范围内的不同光栅深度。在固定光栅几何形状的情况下,这种深度变化能够根据特定应用的要求对SPP共振带宽进行主动调谐。实验装置采用可调谐量子级联激光器(QCL),并能够获取角度分辨的实验波长光谱,以表征镜面反射率中SPP共振的波长和角度依赖性。实验结果与模拟结果吻合良好。一般来说,较浅的光栅在反射中显示出较窄的SPP共振。特别是,我们报告了在波长为4.12微米时半高宽(FWHM)为2.9纳米以及信号衰减为21%的情况。根据对光栅结构上方电介质折射率变化的数值研究,预计光谱位移为4122纳米/RIU,这转化为约1421 RIU-1的品质因数(FOM)。所建议结构的制造在八英寸硅衬底上进行,完全在工业制造环境中使用标准微制造工艺完成。这反过来代表了迈向适用于半导体大规模生产的等离子体传感器技术的决定性一步。