Suppr超能文献

基于 ICP 和人工地标辅助的 LiDAR 定位算法。

LiDAR Positioning Algorithm Based on ICP and Artificial Landmarks Assistance.

机构信息

College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.

Nondestructive Detection and Monitoring Technology for High Speed Transportation Facilities, Key Laboratory of Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.

出版信息

Sensors (Basel). 2021 Oct 28;21(21):7141. doi: 10.3390/s21217141.

Abstract

As one of the automated guided vehicle (AGV) positioning methods, the LiDAR positioning method, based on artificial landmarks, has been widely used in warehousing logistics industries in recent years. However, the traditional LiDAR positioning method based on artificial landmarks mainly depends on the three-point positioning method, the performance of which is limited due to landmarks' layout and detection requirements. This paper proposes a LiDAR positioning algorithm based on iterative closest point (ICP) and artificial landmarks assistance. It provides improvements based on the traditional ICP algorithm. The result of positioning provided by the landmarks is used as the initial iteration ICP value. The combination of the ICP algorithm and landmarks enables the positioning algorithm to maintain a certain positioning precision when landmark detection is disturbed. By comparing the proposed algorithm with the positioning scheme developed by SICK in Germany, we prove that the combination of the ICP algorithm and landmarks can effectively improve the robustness under the premise of ensuring precision.

摘要

作为自动导引车 (AGV) 的定位方法之一,基于人工地标物的激光雷达定位方法近年来在仓储物流行业得到了广泛应用。然而,传统的基于人工地标物的激光雷达定位方法主要依赖于三点定位方法,由于地标物的布局和检测要求,其性能受到限制。本文提出了一种基于迭代最近点 (ICP) 和人工地标物辅助的激光雷达定位算法。它对传统的 ICP 算法进行了改进。地标物提供的定位结果被用作初始迭代 ICP 值。ICP 算法与地标物的结合使定位算法在地标物检测受到干扰时仍能保持一定的定位精度。通过将所提出的算法与德国 SICK 开发的定位方案进行比较,证明了 ICP 算法与地标物的结合可以在保证精度的前提下有效提高鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb7e/8587545/b102d3728ef9/sensors-21-07141-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验