Suppr超能文献

基于可调Q因子小波变换和离散余弦变换的稀疏优化抑制罗兰-C信号中的连续波干扰

Suppression of Continuous Wave Interference in Loran-C Signal Based on Sparse Optimization Using Tunable Q-Factor Wavelet Transform and Discrete Cosine Transform.

作者信息

Ma Wenwen, Gao Jiuxiang, Yuan Yanning, Shi Zhensheng, Xi Xiaoli

机构信息

School of Information and Communications Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China.

出版信息

Sensors (Basel). 2021 Oct 28;21(21):7153. doi: 10.3390/s21217153.

Abstract

Loran-C is the most essential backup and supplementary system for the global navigation satellite system (GNSS). Continuous wave interference (CWI) is one of the main interferences in the Loran-C system, which will cause errors in the measurement of the time of arrival, thereby affecting positioning performance. The traditional adaptive notch filter method needs to know the frequency of CWI when removing it, and the number is limited. This paper presents a method based on sparseness to suppress the CWI in the Loran-C signal. According to the different morphological characteristics of the Loran-C signal and the CWI, we construct dictionaries suitable for the two components, respectively. We use the tunable Q-factor wavelet transform and the discrete cosine transform to make the two components obtain a good sparse representation in their respective dictionaries. Then, the two components are separated using the morphological component analysis theory. We illustrate this method using both synthetic data and actual data. A huge advantage of the proposed method is that there is no need to know the frequencies of the CWI for it can better cope with frequency changes of the CWI in the actual environments. Compared with the adaptive notch filter method, the results of the proposed method show that our approach is more effective and convenient.

摘要

罗兰 - C 是全球导航卫星系统(GNSS)最重要的备份和补充系统。连续波干扰(CWI)是罗兰 - C 系统中的主要干扰之一,它会导致到达时间测量出现误差,进而影响定位性能。传统的自适应陷波滤波器方法在去除 CWI 时需要知道其频率,而且可处理的频率数量有限。本文提出一种基于稀疏性的方法来抑制罗兰 - C 信号中的 CWI。根据罗兰 - C 信号和 CWI 不同的形态特征,我们分别构建适用于这两个分量的字典。利用可调 Q 因子小波变换和离散余弦变换,使这两个分量在各自的字典中获得良好的稀疏表示。然后,使用形态分量分析理论将这两个分量分离。我们通过合成数据和实际数据对该方法进行了说明。所提方法的一个巨大优势是无需知道 CWI 的频率,因为它能更好地应对实际环境中 CWI 的频率变化。与自适应陷波滤波器方法相比,所提方法的结果表明我们的方法更有效、更便捷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b66a/8587088/107f80175aa7/sensors-21-07153-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验