Suppr超能文献

实时伪造检测在自动人体活动识别应用中的研究。

Live Spoofing Detection for Automatic Human Activity Recognition Applications.

机构信息

Teqball Kft., Expo tér 5-7, 1101 Budapest, Hungary.

Doctoral School of Military Engineering, National University of Public Service, Ludovika tér 2, 1083 Budapest, Hungary.

出版信息

Sensors (Basel). 2021 Nov 4;21(21):7339. doi: 10.3390/s21217339.

Abstract

Human Activity Recognition (HAR) has become increasingly crucial in several applications, ranging from motion-driven virtual games to automated video surveillance systems. In these applications, sensors such as smart phone cameras, web cameras or CCTV cameras are used for detecting and tracking physical activities of users. Inevitably, spoof detection in HAR is essential to prevent anomalies and false alarms. To this end, we propose a deep learning based approach that can be used to detect spoofing in various fields such as border control, institutional security and public safety by surveillance cameras. Specifically, in this work, we address the problem of detecting spoofing occurring from video replay attacks, which is more common in such applications. We present a new database containing several videos of users juggling a football, captured under different lighting conditions and using different display and capture devices. We train our models using this database and the proposed system is capable of running in parallel with the HAR algorithms in real-time. Our experimental results show that our approach precisely detects video replay spoofing attacks and generalizes well, even to other applications such as spoof detection in face biometric authentication. Results show that our approach is effective even under resizing and compression artifacts that are common in HAR applications using remote server connections.

摘要

人体活动识别(HAR)在许多应用中变得越来越重要,从运动驱动的虚拟游戏到自动化视频监控系统。在这些应用中,智能手机摄像头、网络摄像头或闭路电视摄像头等传感器被用于检测和跟踪用户的身体活动。不可避免的是,HAR 中的欺骗检测对于防止异常和误报至关重要。为此,我们提出了一种基于深度学习的方法,可以用于通过监控摄像头检测边界控制、机构安全和公共安全等各个领域的欺骗。具体来说,在这项工作中,我们解决了视频重放攻击中发生的欺骗问题,这种欺骗在这些应用中更为常见。我们提出了一个新的数据库,其中包含几个用户玩足球的视频,这些视频是在不同的照明条件下,使用不同的显示和捕获设备捕获的。我们使用这个数据库来训练我们的模型,并且所提出的系统能够与实时的 HAR 算法并行运行。我们的实验结果表明,我们的方法能够精确地检测视频重放欺骗攻击,并且具有很好的泛化能力,甚至可以应用于其他应用,如面部生物特征认证中的欺骗检测。结果表明,即使在使用远程服务器连接的 HAR 应用中常见的图像大小调整和压缩伪影的情况下,我们的方法也是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c03d/8587143/ca88e76fc1ff/sensors-21-07339-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验