Suppr超能文献

揭示药物-靶标相互作用的计算模型和算法。

Revealing Drug-Target Interactions with Computational Models and Algorithms.

机构信息

School of Computer Science, Hunan University of Technology, Zhuzhou 412007, Hunan, China.

School of Computer Science, Hunan Institute of Technology, Henyang 421002, Hunan, China.

出版信息

Molecules. 2019 May 2;24(9):1714. doi: 10.3390/molecules24091714.

Abstract

BACKGROUND

Identifying possible drug-target interactions (DTIs) has become an important task in drug research and development. Although high-throughput screening is becoming available, experimental methods narrow down the validation space because of extremely high cost, low success rate, and time consumption. Therefore, various computational models have been exploited to infer DTI candidates.

METHODS

We introduced relevant databases and packages, mainly provided a comprehensive review of computational models for DTI identification, including network-based algorithms and machine learning-based methods. Specially, machine learning-based methods mainly include bipartite local model, matrix factorization, regularized least squares, and deep learning.

RESULTS

Although computational methods have obtained significant improvement in the process of DTI prediction, these models have their limitations. We discussed potential avenues for boosting DTI prediction accuracy as well as further directions.

摘要

背景

识别潜在的药物-靶点相互作用(DTI)已成为药物研发中的一项重要任务。虽然高通量筛选变得越来越可行,但由于成本极高、成功率低和耗时等原因,实验方法缩小了验证空间。因此,各种计算模型已被用于推断 DTI 候选物。

方法

我们介绍了相关数据库和包,主要全面回顾了用于 DTI 识别的计算模型,包括基于网络的算法和基于机器学习的方法。具体来说,基于机器学习的方法主要包括二分局部模型、矩阵分解、正则化最小二乘法和深度学习。

结果

尽管计算方法在 DTI 预测过程中取得了显著的进展,但这些模型仍存在局限性。我们讨论了提高 DTI 预测准确性的潜在途径以及进一步的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7369/6540161/0198ca289802/molecules-24-01714-g001.jpg

相似文献

1
Revealing Drug-Target Interactions with Computational Models and Algorithms.
Molecules. 2019 May 2;24(9):1714. doi: 10.3390/molecules24091714.
2
Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey.
Brief Bioinform. 2019 Jul 19;20(4):1337-1357. doi: 10.1093/bib/bby002.
3
Machine learning approaches and databases for prediction of drug-target interaction: a survey paper.
Brief Bioinform. 2021 Jan 18;22(1):247-269. doi: 10.1093/bib/bbz157.
4
Drug-target interaction prediction: databases, web servers and computational models.
Brief Bioinform. 2016 Jul;17(4):696-712. doi: 10.1093/bib/bbv066. Epub 2015 Aug 17.
5
Drug-target interaction prediction with tree-ensemble learning and output space reconstruction.
BMC Bioinformatics. 2020 Feb 7;21(1):49. doi: 10.1186/s12859-020-3379-z.
6
A Machine Learning Approach for Drug-target Interaction Prediction using Wrapper Feature Selection and Class Balancing.
Mol Inform. 2020 May;39(5):e1900062. doi: 10.1002/minf.201900062. Epub 2020 Feb 11.
7
Predicting drug-target interactions using restricted Boltzmann machines.
Bioinformatics. 2013 Jul 1;29(13):i126-34. doi: 10.1093/bioinformatics/btt234.
8
Improved Prediction of Drug-Target Interactions Using Self-Paced Learning with Collaborative Matrix Factorization.
J Chem Inf Model. 2019 Jul 22;59(7):3340-3351. doi: 10.1021/acs.jcim.9b00408. Epub 2019 Jul 11.
10
Computational predictive models for P-glycoprotein inhibition of in-house chalcone derivatives and drug-bank compounds.
Mol Divers. 2016 Nov;20(4):945-961. doi: 10.1007/s11030-016-9688-5. Epub 2016 Jul 18.

引用本文的文献

2
Prediction of drug target interaction based on under sampling strategy and random forest algorithm.
PLoS One. 2025 Mar 6;20(3):e0318420. doi: 10.1371/journal.pone.0318420. eCollection 2025.
4
LDS-CNN: a deep learning framework for drug-target interactions prediction based on large-scale drug screening.
Health Inf Sci Syst. 2023 Sep 2;11(1):42. doi: 10.1007/s13755-023-00243-w. eCollection 2023 Dec.
7
Drug-target interaction prediction based on protein features, using wrapper feature selection.
Sci Rep. 2023 Mar 3;13(1):3594. doi: 10.1038/s41598-023-30026-y.
8
LGBMDF: A cascade forest framework with LightGBM for predicting drug-target interactions.
Front Microbiol. 2023 Jan 5;13:1092467. doi: 10.3389/fmicb.2022.1092467. eCollection 2022.
9
Drug repositioning: A bibliometric analysis.
Front Pharmacol. 2022 Sep 26;13:974849. doi: 10.3389/fphar.2022.974849. eCollection 2022.
10
A Novel Algorithm for Detecting Microsatellite Instability Based on Next-Generation Sequencing Data.
Front Oncol. 2022 Jun 30;12:916379. doi: 10.3389/fonc.2022.916379. eCollection 2022.

本文引用的文献

1
Computational Model Development of Drug-Target Interaction Prediction: A Review.
Curr Protein Pept Sci. 2019;20(6):492-494. doi: 10.2174/1389203720666190123164310.
3
Computational Prediction of Drug-Target Interactions via Ensemble Learning.
Methods Mol Biol. 2019;1903:239-254. doi: 10.1007/978-1-4939-8955-3_14.
4
The drug repurposing landscape from 2012 to 2017: evolution, challenges, and possible solutions.
Drug Discov Today. 2019 Mar;24(3):789-795. doi: 10.1016/j.drudis.2018.11.022. Epub 2018 Dec 1.
5
Drug repurposing: progress, challenges and recommendations.
Nat Rev Drug Discov. 2019 Jan;18(1):41-58. doi: 10.1038/nrd.2018.168. Epub 2018 Oct 12.
6
Machine Learning for Drug-Target Interaction Prediction.
Molecules. 2018 Aug 31;23(9):2208. doi: 10.3390/molecules23092208.
7
Efficient Training for Positive Unlabeled Learning.
IEEE Trans Pattern Anal Mach Intell. 2019 Nov;41(11):2584-2598. doi: 10.1109/TPAMI.2018.2860995. Epub 2018 Jul 30.
8
Changing Trends in Computational Drug Repositioning.
Pharmaceuticals (Basel). 2018 Jun 5;11(2):57. doi: 10.3390/ph11020057.
9
Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey.
Brief Bioinform. 2019 Jul 19;20(4):1337-1357. doi: 10.1093/bib/bby002.
10
A bibliometric review of drug repurposing.
Drug Discov Today. 2018 Mar;23(3):661-672. doi: 10.1016/j.drudis.2018.01.018. Epub 2018 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验