Suppr超能文献

基于人工神经网络模型的钴铬生物医学合金干式铣削表面粗糙度分析与预测

Surface Roughness Analysis and Prediction with an Artificial Neural Network Model for Dry Milling of Co-Cr Biomedical Alloys.

作者信息

Dijmărescu Manuela-Roxana, Abaza Bogdan Felician, Voiculescu Ionelia, Dijmărescu Maria-Cristina, Ciocan Ion

机构信息

Manufacturing Engineering Department, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania.

Quality Engineering and Industrial Technologies Department, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania.

出版信息

Materials (Basel). 2021 Oct 24;14(21):6361. doi: 10.3390/ma14216361.

Abstract

The aim of this paper is to conduct an experimental study in order to obtain a roughness (Ra) prediction model for dry end-milling (with an AlTiCrSiN PVD-coated tool) of the Co-28Cr-6Mo and Co-20Cr-15W-10Ni biomedical alloys, a model that can contribute to more quickly obtaining the desired surface quality and shortening the manufacturing process time. An experimental plan based on the central composite design method was adopted to determine the influence of the axial depth of cut, feed per tooth and cutting speed process parameters (input variables) on the Ra surface roughness (response variable) which was recorded after machining for both alloys. To develop the prediction models, statistical techniques were used first and three prediction equations were obtained for each alloy, the best results being achieved using response surface methodology. However, for obtaining a higher accuracy of prediction, ANN models were developed with the help of an application made in LabView for roughness (Ra) prediction. The primary results of this research consist of the Co-28Cr-6Mo and Co-20Cr-15W-10Ni prediction models and the developed application. The modeling results show that the ANN model can predict the surface roughness with high accuracy for the considered Co-Cr alloys.

摘要

本文的目的是进行一项实验研究,以获得用于钴 - 28铬 - 6钼和钴 - 20铬 - 15钨 - 10镍生物医学合金干式立铣削(使用AlTiCrSiN物理气相沉积涂层刀具)的粗糙度(Ra)预测模型,该模型有助于更快地获得所需的表面质量并缩短制造工艺时间。采用基于中心复合设计方法的实验计划来确定切削深度、每齿进给量和切削速度工艺参数(输入变量)对两种合金加工后记录的Ra表面粗糙度(响应变量)的影响。为了建立预测模型,首先使用统计技术,为每种合金获得了三个预测方程,使用响应面方法取得了最佳结果。然而,为了获得更高的预测精度,借助LabView中制作的用于粗糙度(Ra)预测的应用程序开发了人工神经网络(ANN)模型。本研究的主要成果包括钴 - 28铬 - 6钼和钴 - 20铬 - 15钨 - 10镍的预测模型以及开发的应用程序。建模结果表明,对于所考虑的钴铬合金,人工神经网络模型能够高精度地预测表面粗糙度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76ed/8585254/13a50b106e1e/materials-14-06361-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验