Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany.
Proc Natl Acad Sci U S A. 2021 Nov 16;118(46). doi: 10.1073/pnas.2025670118.
Unicellular marine microalgae are responsible for one of the largest carbon sinks on Earth. This is in part due to intracellular formation of calcium carbonate scales termed coccoliths. Traditionally, the influence of changing environmental conditions on this process has been estimated using poorly constrained analogies to crystallization mechanisms in bulk solution, yielding ambiguous predictions. Here, we elucidated the intracellular nanoscale environment of coccolith formation in the model species using cryoelectron tomography. By visualizing cells at various stages of the crystallization process, we reconstructed a timeline of coccolith development. The three-dimensional data portray the native-state structural details of coccolith formation, uncovering the crystallization mechanism, and how it is spatially and temporally controlled. Most strikingly, the developing crystals are only tens of nanometers away from delimiting membranes, resulting in a highly confined volume for crystal growth. We calculate that the number of soluble ions that can be found in such a minute volume at any given time point is less than the number needed to allow the growth of a single atomic layer of the crystal and that the uptake of single protons can markedly affect nominal pH values. In such extreme confinement, the crystallization process is expected to depend primarily on the regulation of ion fluxes by the living cell, and nominal ion concentrations, such as pH, become the result, rather than a driver, of the crystallization process. These findings call for a new perspective on coccolith formation that does not rely exclusively on solution chemistry.
单细胞海洋微藻是地球上最大的碳汇之一。这在一定程度上是由于细胞内形成了碳酸钙鳞片,称为颗石藻。传统上,通过与大量溶液中的结晶机制进行约束较差的类比来估计环境条件变化对该过程的影响,从而产生模棱两可的预测。在这里,我们使用冷冻电子断层扫描技术阐明了模型物种中颗石藻形成的细胞内纳米尺度环境。通过在结晶过程的各个阶段可视化细胞,我们重建了颗石藻发育的时间表。三维数据描绘了颗石藻形成的天然状态结构细节,揭示了结晶机制以及其空间和时间上的控制方式。最引人注目的是,正在发育的晶体距离限定膜只有几十纳米,从而为晶体生长提供了一个高度受限的体积。我们计算得出,在给定的时间点,在如此微小的体积中可以找到的可溶离子数量少于允许晶体生长单个原子层所需的数量,并且单个质子的摄取可以明显影响名义 pH 值。在如此极端的限制下,结晶过程预计主要取决于活细胞对离子通量的调节,而名义离子浓度(如 pH 值)成为结晶过程的结果,而不是驱动力。这些发现要求对颗石藻形成有一个新的认识,而不仅仅依赖于溶液化学。