Kim Kwiyong, Raymond Darien, Candeago Riccardo, Su Xiao
Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Nat Commun. 2021 Nov 12;12(1):6554. doi: 10.1038/s41467-021-26814-7.
Molecularly-selective metal separations are key to sustainable recycling of Li-ion battery electrodes. However, metals with close reduction potentials present a fundamental challenge for selective electrodeposition, especially for critical elements such as cobalt and nickel. Here, we demonstrate the synergistic combination of electrolyte control and interfacial design to achieve molecular selectivity for cobalt and nickel during potential-dependent electrodeposition. Concentrated chloride allows for the speciation control via distinct formation of anionic cobalt chloride complex (CoCl), while maintaining nickel in the cationic form ([Ni(HO)Cl]). Furthermore, functionalizing electrodes with a positively charged polyelectrolyte (i.e., poly(diallyldimethylammonium) chloride) changes the mobility of CoCl by electrostatic stabilization, which tunes cobalt selectivity depending on the polyelectrolyte loading. This strategy is applied for the multicomponent metal recovery from commercially-sourced lithium nickel manganese cobalt oxide electrodes. We report a final purity of 96.4 ± 3.1% and 94.1 ± 2.3% for cobalt and nickel, respectively. Based on a technoeconomic analysis, we identify the limiting costs arising from the background electrolyte, and provide a promising outlook of selective electrodeposition as an efficient separation approach for battery recycling.
分子选择性金属分离是锂离子电池电极可持续回收利用的关键。然而,具有相近还原电位的金属对选择性电沉积构成了根本性挑战,尤其是对于钴和镍等关键元素而言。在此,我们展示了电解质控制和界面设计的协同组合,以在电位依赖的电沉积过程中实现对钴和镍的分子选择性。浓氯化物通过形成独特的阴离子氯化钴配合物(CoCl)实现物种控制,同时使镍保持阳离子形式([Ni(H₂O)₆]²⁺)。此外,用带正电荷的聚电解质(即聚二烯丙基二甲基氯化铵)对电极进行功能化处理,通过静电稳定作用改变CoCl⁻的迁移率,这根据聚电解质负载量调节钴的选择性。该策略应用于从商业来源的锂镍锰钴氧化物电极中回收多组分金属。我们报告钴和镍的最终纯度分别为96.4±3.1%和94.1±2.3%。基于技术经济分析,我们确定了背景电解质产生的限制成本,并为选择性电沉积作为电池回收的一种有效分离方法提供了有前景的展望。