imec-Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium. Address: Vision Lab, University of Antwerp (CDE), Universiteitsplein 1, N.1.18, Wilrijk B-2610, Belgium.
Clinical Sciences, Lund, Department of Diagnostic Radiology, Lund University, Klinikgatan 13B, Lund 22185, Sweden.
Neuroimage. 2021 Dec 15;245:118717. doi: 10.1016/j.neuroimage.2021.118717. Epub 2021 Nov 11.
Multi-tissue constrained spherical deconvolution (MT-CSD) leverages the characteristic b-value dependency of each tissue type to estimate both the apparent tissue densities and the white matter fiber orientation distribution function from diffusion MRI data. In this work, we generalize MT-CSD to tensor-valued diffusion encoding with arbitrary b-tensor shapes. This enables the use of data encoded with mixed b-tensors, rather than being limited to the subset of linear (conventional) b-tensors. Using the complete set of data, including all b-tensor shapes, provides a categorical improvement in the estimation of apparent tissue densities, fiber ODF, and resulting tractography. Furthermore, we demonstrate that including multiple b-tensor shapes in the analysis provides improved contrast between tissue types, in particular between gray matter and white matter. We also show that our approach provides high-quality apparent tissue density maps and high-quality fiber tracking from data, even with sparse sampling across b-tensors that yield whole-brain coverage at 2 mm isotropic resolution in approximately 5:15 min.
多组织约束球谐反卷积(MT-CSD)利用各组织类型的特征 b 值依赖性,从弥散磁共振成像数据中估计表观组织密度和白质纤维方向分布函数。在这项工作中,我们将 MT-CSD 推广到具有任意 b 张量形状的张量值扩散编码。这使得可以使用混合 b 张量编码的数据,而不限于线性(常规)b 张量的子集。使用完整的数据集,包括所有 b 张量形状,在估计表观组织密度、纤维 ODF 和生成的示踪图方面提供了分类改进。此外,我们证明在分析中包括多个 b 张量形状可以提高组织类型之间的对比度,特别是灰质和白质之间的对比度。我们还表明,即使在 b 张量上进行稀疏采样,以大约 5:15 分钟的时间获得 2 毫米各向同性分辨率的全脑覆盖,我们的方法也可以从数据中提供高质量的表观组织密度图和高质量的纤维跟踪。