Suppr超能文献

机器学习算法预测 COVID-19 机械通气患者 ICU 低血压的性能:一项队列研究。

Performance of a machine-learning algorithm to predict hypotension in mechanically ventilated patients with COVID-19 admitted to the intensive care unit: a cohort study.

机构信息

Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.

Department of Intensive Care, Spaarne Gasthuis, Boerhaavelaan 22, Haarlem, The Netherlands.

出版信息

J Clin Monit Comput. 2022 Oct;36(5):1397-1405. doi: 10.1007/s10877-021-00778-x. Epub 2021 Nov 13.

Abstract

The Hypotension Prediction Index (HPI) is a commercially available machine-learning algorithm that provides warnings for impending hypotension, based on real-time arterial waveform analysis. The HPI was developed with arterial waveform data of surgical and intensive care unit (ICU) patients, but has never been externally validated in the latter group. In this study, we evaluated diagnostic ability of the HPI with invasively collected arterial blood pressure data in 41 patients with COVID-19 admitted to the ICU for mechanical ventilation. Predictive ability was evaluated at HPI thresholds from 0 to 100, at incremental intervals of 5. After exceeding the studied threshold, the next 20 min were screened for positive (mean arterial pressure (MAP) < 65 mmHg for at least 1 min) or negative (absence of MAP < 65 mmHg for at least 1 min) events. Subsequently, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and time to event were determined for every threshold. Almost all patients (93%) experienced at least one hypotensive event. Median number of events was 21 [7-54] and time spent in hypotension was 114 min [20-303]. The optimal threshold was 90, with a sensitivity of 0.91 (95% confidence interval 0.81-0.98), specificity of 0.87 (0.81-0.92), PPV of 0.69 (0.61-0.77), NPV of 0.99 (0.97-1.00), and median time to event of 3.93 min (3.72-4.15). Discrimination ability of the HPI was excellent, with an area under the curve of 0.95 (0.93-0.97). This validation study shows that the HPI correctly predicts hypotension in mechanically ventilated COVID-19 patients in the ICU, and provides a basis for future studies to assess whether hypotension can be reduced in ICU patients using this algorithm.

摘要

低血压预测指数(HPI)是一种商用机器学习算法,它基于实时动脉波形分析,为即将发生的低血压提供警报。HPI 是使用外科和重症监护病房(ICU)患者的动脉波形数据开发的,但从未在后者群体中进行过外部验证。在这项研究中,我们使用 41 名因 COVID-19 而接受机械通气的 ICU 患者的有创动脉血压数据评估了 HPI 的诊断能力。在从 0 到 100 的 HPI 阈值上评估了预测能力,每隔 5 个增量进行评估。超过研究阈值后,接下来的 20 分钟会筛选阳性(平均动脉压(MAP)<65mmHg 至少 1 分钟)或阴性(MAP<65mmHg 至少 1 分钟)事件。随后,为每个阈值确定了灵敏度、特异性、阳性预测值(PPV)、阴性预测值(NPV)和事件时间。几乎所有患者(93%)都经历过至少一次低血压事件。事件中位数为 21 次[7-54],低血压时间为 114 分钟[20-303]。最佳阈值为 90,灵敏度为 0.91(95%置信区间 0.81-0.98),特异性为 0.87(0.81-0.92),PPV 为 0.69(0.61-0.77),NPV 为 0.99(0.97-1.00),中位事件时间为 3.93 分钟(3.72-4.15)。HPI 的鉴别能力非常出色,曲线下面积为 0.95(0.93-0.97)。这项验证研究表明,HPI 可以正确预测 ICU 机械通气 COVID-19 患者的低血压,为未来使用该算法评估 ICU 患者的低血压是否可以减少提供了依据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验