Suppr超能文献

实现大规模凝聚相杂化密度泛函理论分子动力学Ⅱ:等压等焓和等压恒温系综的扩展。

Enabling Large-Scale Condensed-Phase Hybrid Density Functional Theory-Based Molecular Dynamics II: Extensions to the Isobaric-Isoenthalpic and Isobaric-Isothermal Ensembles.

机构信息

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.

Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States.

出版信息

J Chem Theory Comput. 2021 Dec 14;17(12):7789-7813. doi: 10.1021/acs.jctc.0c01194. Epub 2021 Nov 14.

Abstract

In the previous paper of this series [Ko, H.-Y. , , 3757-3785], we presented a theoretical and algorithmic framework based on a localized representation of the occupied space that exploits the inherent sparsity in the real-space evaluation of the exact exchange (EXX) interaction in finite-gap systems. This was accompanied by a detailed description of exx, a massively parallel hybrid message-passing interface MPI/OpenMP implementation of this approach in Quantum ESPRESSO (QE) that enables linear scaling hybrid density functional theory (DFT)-based molecular dynamics (AIMD) in the microcanonical/canonical (/) ensembles of condensed-phase systems containing 500-1000 atoms (in fixed orthorhombic cells) with a wall time cost comparable to semi-local DFT. In this work, we extend the current capabilities of exx to enable hybrid DFT-based AIMD simulations of large-scale condensed-phase systems with general and fluctuating cells in the isobaric-isoenthalpic/isobaric-isothermal (/) ensembles. The theoretical extensions to this approach include an analytical derivation of the EXX contribution to the stress tensor for systems in general simulation cells with a computational complexity that scales linearly with system size. The corresponding algorithmic extensions to exx include optimized routines that (i) handle both static and fluctuating simulation cells with non-orthogonal lattice symmetries, (ii) solve Poisson's equation in general/non-orthogonal cells an automated selection of the auxiliary grid directions in the Natan-Kronik representation of the discrete Laplacian operator, and (iii) evaluate the EXX contribution to the stress tensor. Using this approach, we perform a case study on a variety of condensed-phase systems (including liquid water, a benzene molecular crystal polymorph, and semi-conducting crystalline silicon) and demonstrate that the EXX contributions to the energy and stress tensor simultaneously converge with an appropriate choice of exx parameters. This is followed by a critical assessment of the computational performance of the extended exx module across several different high-performance computing architectures case studies on (i) the computational complexity due to lattice symmetry during simulations of three different ice polymorphs (i.e., ice I, II, and III) and (ii) the strong/weak parallel scaling during large-scale simulations of liquid water. We demonstrate that the robust and highly scalable implementation of this approach in the extended exx module is capable of evaluating the EXX contribution to the stress tensor with negligible cost (<1%) as well as all other EXX-related quantities needed during simulations of liquid water (with a very tight 150 Ry planewave cutoff) in ≈5.2 s ((HO)) and ≈6.8 s ((HO)) per AIMD step. As such, the extended exx module presented in this work brings us another step closer to routinely performing hybrid DFT-based AIMD simulations of sufficient duration for large-scale condensed-phase systems across a wide range of thermodynamic conditions.

摘要

在本系列的上一篇论文中 [Ko, H.-Y.,, 3757-3785],我们提出了一个基于占据空间局部表示的理论和算法框架,利用了有限隙系统中真实空间中精确交换(EXX)相互作用评估的固有稀疏性。同时,我们还详细描述了 exx,这是一种基于量子ESPRESSO(QE)的大规模并行混合消息传递接口 MPI/OpenMP 的实现,它能够在含有 500-1000 个原子的凝聚相系统的微正则/正则(/)系综中进行基于混合密度泛函理论(DFT)的分子动力学(AIMD)模拟,其线性能量成本与半局域 DFT 相当。在这项工作中,我们扩展了 exx 的当前功能,使其能够在等压-等焓/等压-等温(/)系综中对具有一般和变化单元的大规模凝聚相系统进行基于混合 DFT 的 AIMD 模拟。该方法的理论扩展包括对具有计算复杂度与系统大小呈线性关系的一般模拟单元中应力张量的 EXX 贡献的解析推导。相应的 exx 算法扩展包括优化例程,(i)处理具有非正交晶格对称性的静态和变化的模拟单元,(ii)在一般/非正交单元中求解泊松方程,(iii)自动选择纳坦-克罗尼克离散拉普拉斯算子表示中的辅助网格方向,以及(iv)评估 EXX 对应力张量的贡献。使用这种方法,我们对各种凝聚相系统(包括液态水、苯分子晶体多晶型物和半导体晶体硅)进行了案例研究,并证明了适当选择 exx 参数可以同时收敛 EXX 对能量和应力张量的贡献。接着,我们对扩展后的 exx 模块在多个不同的高性能计算架构上的计算性能进行了严格评估——在三个不同冰多晶型物(即冰 I、II 和 III)的晶格对称性计算复杂性案例研究和在液态水的大规模 AIMD 模拟中的强/弱并行扩展性案例研究。我们证明了这种方法在扩展后的 exx 模块中的稳健且高度可扩展的实现能够以可忽略的成本(<1%)评估 EXX 对应力张量的贡献,以及在液态水的 AIMD 模拟中所需的所有其他 EXX 相关量(采用非常紧的 150 Ry 平面波截止),大约 5.2 s ((HO)) 和 6.8 s ((HO)) 每一步 AIMD。因此,本工作中提出的扩展后的 exx 模块使我们在广泛的热力学条件下,对大型凝聚相系统进行足够长时间的基于混合 DFT 的 AIMD 模拟的能力又迈进了一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验