Suppr超能文献

高通量凝聚相杂化密度泛函理论在大规模有限能隙体系中的应用:SEA 方法。

High-Throughput Condensed-Phase Hybrid Density Functional Theory for Large-Scale Finite-Gap Systems: The SeA Approach.

机构信息

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.

出版信息

J Chem Theory Comput. 2023 Jul 11;19(13):4182-4201. doi: 10.1021/acs.jctc.2c00827. Epub 2023 Jun 29.

Abstract

High-throughput electronic structure calculations (often performed using density functional theory (DFT)) play a central role in screening existing and novel materials, sampling potential energy surfaces, and generating data for machine learning applications. By including a fraction of exact exchange (EXX), hybrid functionals reduce the self-interaction error in semilocal DFT and furnish a more accurate description of the underlying electronic structure, albeit at a computational cost that often prohibits such high-throughput applications. To address this challenge, we have constructed a robust, accurate, and computationally efficient framework for high-throughput condensed-phase hybrid DFT and implemented this approach in the PWSCF module of Quantum ESPRESSO (QE). The resulting SeA approach (SeA = SCDM + exx + ACE) combines and seamlessly integrates: () the selected columns of the density matrix method (SCDM, a robust noniterative orbital localization scheme that sidesteps system-dependent optimization protocols), () a recently extended version of exx (a black-box linear-scaling EXX algorithm that exploits sparsity between localized orbitals in real space when evaluating the action of the standard/full-rank operator), and () adaptively compressed exchange (ACE, a low-rank approximation). In doing so, SeA harnesses three levels of computational savings: and from SCDM + exx (which only considers spatially overlapping orbitals on orbital-pair-specific and system-size-independent domains) and from ACE (which reduces the number of calls to SCDM + exx during the self-consistent field (SCF) procedure). Across a diverse set of 200 nonequilibrium (HO) configurations (with densities spanning 0.4-1.7 g/cm), SeA provides a 1-2 order-of-magnitude speedup in the overall time-to-solution, i.e., ≈8-26× compared to the convolution-based PWSCF(ACE) implementation in QE and ≈78-247× compared to the conventional PWSCF(Full) approach, and yields energies, ionic forces, and other properties with high fidelity. As a proof-of-principle high-throughput application, we trained a deep neural network (DNN) potential for ambient liquid water at the hybrid DFT level using SeA via an actively learned data set with ≈8,700 (HO) configurations. Using an out-of-sample set of (HO) configurations (at nonambient conditions), we confirmed the accuracy of this SeA-trained potential and showcased the capabilities of SeA by computing the ground-truth ionic forces in this challenging system containing >1,500 atoms.

摘要

高通量电子结构计算(通常使用密度泛函理论(DFT)进行)在筛选现有和新型材料、采样势能面以及为机器学习应用生成数据方面发挥着核心作用。通过包含部分精确交换(EXX),杂化泛函减少了半局域 DFT 中的自相互作用误差,并提供了对基础电子结构更准确的描述,尽管计算成本通常禁止此类高通量应用。为了解决这个挑战,我们构建了一个稳健、准确和高效的高通量凝聚态杂化 DFT 框架,并在 Quantum ESPRESSO(QE)的 PWSCF 模块中实现了这种方法。所得到的 SeA 方法(SeA = SCDM + exx + ACE)结合并无缝集成了:()密度矩阵方法(SCDM,一种稳健的非迭代轨道定位方案,避免了系统相关的优化协议)的选定列,()最近扩展的 exx 版本(一种利用在实空间中局部轨道之间的稀疏性来评估标准/全秩 算子作用的黑盒线性标度 EXX 算法),和()自适应压缩交换(ACE,一种低秩 逼近)。通过这种方式,SeA 利用了三个级别的计算节省:来自 SCDM + exx(仅考虑轨道对特定和系统大小独立域上空间重叠轨道)的 和来自 ACE(在自洽场(SCF)过程中减少 SCDM + exx 的调用次数)的 。在 200 个非平衡(HO)配置(密度范围为 0.4-1.7 g/cm)的多样化集合中,SeA 在总求解时间上提供了 1-2 个数量级的加速,即在 QE 中与基于卷积的 PWSCF(ACE)实现相比,约为 8-26×,与传统的 PWSCF(Full)方法相比,约为 78-247×,并以高精度提供能量、离子力和其他性质。作为一个高通量应用的原理证明,我们使用 SeA 通过一个主动学习的数据集在杂化 DFT 水平上为环境液体水训练了一个深度神经网络(DNN)势,该数据集包含约 8700 个(HO)配置。使用非环境条件下的(HO)配置的外样本集,我们确认了这个 SeA 训练势的准确性,并展示了 SeA 的能力,即在这个包含超过 1500 个原子的具有挑战性的系统中计算出真实的离子力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验