Suppr超能文献

氧代铁(IV)卟啉π-阳离子自由基配合物环氧化反应的速率限制步骤:电子转移偶联键形成机制

Rate-Limiting Step of Epoxidation Reaction of the Oxoiron(IV) Porphyrin π-Cation Radical Complex: Electron Transfer Coupled Bond Formation Mechanism.

作者信息

Ishimizu Yuri, Ma Zhifeng, Hada Masahiko, Fujii Hiroshi

机构信息

Department of Chemistry, Graduate School of Humanities and Sciences, Nara Women's University, Kitauoyanishi, Nara 630-8506, Japan.

Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan.

出版信息

Inorg Chem. 2021 Dec 6;60(23):17687-17698. doi: 10.1021/acs.inorgchem.1c02287. Epub 2021 Nov 15.

Abstract

Epoxidation reactions catalyzed by high-valent metal-oxo species are key reactions in various biological and chemical processes. Because the redox potentials of alkenes are higher than those of most high-valent metal-oxo species, the electron transfer (ET) from the alkene to the high-valent metal-oxo species in the epoxidation reaction is endergonic and must be coupled with another exergonic process. To reveal the mechanism of the ET, we performed a Marcus plot analysis for the epoxidation reaction of the oxoiron(IV) porphyrin π-cation radical complex (compound I) with alkene. The Marcus plots can be simulated with a linear line with the gradient of 0.50 when the redox potential of compound I varies and 0.07 when the redox potential of alkene varies. These results indicate that the ET process is involved in the rate-limiting step and coupled with the following O-C bond formation process: ET coupled bond formation mechanism. The DFT calculations support this conclusion and disclose the details of the mechanism. As the alkene comes close to the oxo ligand, the energy of the highest occupied molecular orbital (HOMO) of the alkene increases and the energy for the ET becomes small enough to allow the ET. Finally, the ET occurs from the HOMO of the alkene to the porphyrin π-radical orbital. The shift of one electron from the HOMO of the alkene by the ET simultaneously results in the O-C half bond formation between the oxo ligand and the alkene. The ET process itself is still endergonic and reversible, but the bond formation coupled with the ET changes the overall process to exergonic and irreversible. We also discuss the similarity with the aromatic hydroxylation reaction and the relevance to the epoxidation reactions of other metal-oxo complexes and peracid.

摘要

高价金属氧物种催化的环氧化反应是各种生物和化学过程中的关键反应。由于烯烃的氧化还原电位高于大多数高价金属氧物种,环氧化反应中从烯烃到高价金属氧物种的电子转移(ET)是吸热的,必须与另一个放能过程耦合。为了揭示电子转移的机制,我们对氧合铁(IV)卟啉π-阳离子自由基配合物(化合物I)与烯烃的环氧化反应进行了马库斯曲线分析。当化合物I的氧化还原电位变化时,马库斯曲线可以用斜率为0.50的直线模拟,当烯烃的氧化还原电位变化时,可以用斜率为0.07的直线模拟。这些结果表明,电子转移过程参与了限速步骤,并与随后的O-C键形成过程耦合:电子转移耦合键形成机制。密度泛函理论(DFT)计算支持这一结论,并揭示了该机制的细节。当烯烃靠近氧配体时,烯烃最高占据分子轨道(HOMO)的能量增加,电子转移的能量变得足够小以允许电子转移。最后,电子从烯烃的HOMO转移到卟啉π-自由基轨道。电子转移使烯烃的HOMO失去一个电子,同时导致氧配体与烯烃之间形成O-C半键。电子转移过程本身仍然是吸热和可逆的,但与电子转移耦合的键形成将整个过程转变为放能和不可逆的。我们还讨论了与芳族羟基化反应的相似性以及与其他金属氧配合物和过酸的环氧化反应的相关性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验