Suppr超能文献

党派不公正选区划分的最优性与公平性。

Optimality and fairness of partisan gerrymandering.

作者信息

Lagarde Antoine, Tomala Tristan

机构信息

HEC Paris, 1 rue de la Libération, 78351 Jouy-en-Josas, France.

HEC Paris and GREGHEC, 1 rue de la Libération, 78351 Jouy-en-Josas, France.

出版信息

Math Program. 2021 Nov 9:1-37. doi: 10.1007/s10107-021-01731-1.

Abstract

We consider the problem of optimal partisan gerrymandering: a legislator in charge of redrawing the boundaries of equal-sized congressional districts wants to ensure the best electoral outcome for his own party. The so-called gerrymanderer faces two issues: the number of districts is finite and there is uncertainty at the level of each district. Solutions to this problem consists in favorable voters in as many districts as possible to get tight majorities, and in unfavorable voters in the remaining districts. The optimal payoff of the gerrymanderer tends to increase as the uncertainty decreases and the number of districts is large. With an infinite number of districts, this problem boils down to concavifying a function, similarly to the optimal Bayesian persuasion problem. We introduce a measure of fairness and show that optimal gerrymandering is accordingly closer to uniform districting (full cracking), which is most unfair, than to community districting (full packing), which is very fair.

摘要

我们考虑最优党派不公正选区划分问题

负责重新划定规模相等的国会选区边界的立法者希望确保其所在政党获得最佳选举结果。所谓的不公正选区划分者面临两个问题:选区数量有限,且每个选区层面存在不确定性。解决此问题的方法包括在尽可能多的选区争取有利选民以获得微弱多数优势,以及在其余选区分散不利选民。随着不确定性降低且选区数量众多,不公正选区划分者的最优收益往往会增加。在选区数量无限的情况下,此问题可归结为使一个函数凹化,这与最优贝叶斯说服问题类似。我们引入一种公平性度量,并表明最优不公正选区划分相应地更接近最不公平的均匀选区划分(完全打散),而非非常公平的社区选区划分(完全集中)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a7f/8577182/12e9b9e649d2/10107_2021_1731_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验