Fiorini Samuel, Huynh Tony, Weltge Stefan
Université libre de Bruxelles, Brussels, Belgium.
Monash University, Melbourne, Australia.
Math Program. 2021;190(1-2):467-482. doi: 10.1007/s10107-020-01542-w. Epub 2020 Jul 15.
In convex integer programming, various procedures have been developed to strengthen convex relaxations of sets of integer points. On the one hand, there exist several general-purpose methods that strengthen relaxations without specific knowledge of the set of feasible integer points, such as popular linear programming or semi-definite programming hierarchies. On the other hand, various methods have been designed for obtaining strengthened relaxations for very specific sets that arise in combinatorial optimization. We propose a new efficient method that interpolates between these two approaches. Our procedure strengthens any convex set containing a set by exploiting certain additional information about . Namely, the required extra information will be in the form of a Boolean formula defining the target set . The new relaxation is obtained by "feeding" the convex set into the formula . We analyze various aspects regarding the strength of our procedure. As one application, interpreting an iterated application of our procedure as a hierarchy, our findings simplify, improve, and extend previous results by Bienstock and Zuckerberg on covering problems.
在凸整数规划中,已经开发了各种程序来强化整数点集的凸松弛。一方面,存在几种通用方法,它们在不了解可行整数点集具体情况的前提下强化松弛,比如常见的线性规划或半定规划层次结构。另一方面,针对组合优化中出现的非常特定的集合,已经设计了各种方法来获得强化松弛。我们提出了一种在这两种方法之间进行插值的新的有效方法。我们的程序通过利用关于集合的某些额外信息来强化包含该集合的任何凸集。具体而言,所需的额外信息将采用定义目标集的布尔公式的形式。通过将凸集“输入”到公式中获得新的松弛。我们分析了有关我们程序强度的各个方面。作为一个应用,将我们程序的迭代应用解释为一个层次结构,我们的发现简化、改进并扩展了比恩斯托克和祖克伯格之前关于覆盖问题的结果。