Suppr超能文献

贝叶斯与最大似然建模以及具有环形结构的人际问题的高级评分

Bayesian and Maximum-Likelihood Modeling and Higher-Level Scores of Interpersonal Problems With Circumplex Structure.

作者信息

Weide Anneke C, Scheuble Vera, Beauducel André

机构信息

Department of Methods and Diagnostics, Institute of Psychology, University of Bonn, Bonn, Germany.

出版信息

Front Psychol. 2021 Oct 29;12:761378. doi: 10.3389/fpsyg.2021.761378. eCollection 2021.

Abstract

Difficulties in interpersonal behavior are often measured by the circumplex-based Inventory of Interpersonal Problems. Its eight scales can be represented by a three-factor structure with two circumplex factors, Dominance and Love, and a general problem factor, Distress. Bayesian confirmatory factor analysis is well-suited to evaluate the higher-level structure of interpersonal problems because circumplex loading priors allow for data-driven adjustments and a more flexible investigation of the ideal circumplex pattern than conventional maximum likelihood confirmatory factor analysis. Using a non-clinical sample from an online questionnaire study ( = 822), we replicated the three-factor structure of the IIP by maximum likelihood and Bayesian confirmatory factor analysis and found great proximity of the Bayesian loadings to perfect circumplexity. We found additional support for the validity of the three-factor model of the IIP by including external criteria-Agreeableness, Extraversion, and Neuroticism from the Big Five and subclinical grandiose narcissism-in the analysis. We also investigated higher-level scores for Dominance, Love, and Distress using traditional regression factor scores and weighted sum scores. We found excellent reliability (with ≥ 0.90) for Dominance, Love, and Distress for the two scoring methods. We found high congruence of the higher-level scores with the underlying factors and good circumplex properties of the scoring models. The correlational pattern with the external measures was in line with theoretical expectations and similar to the results from the factor analysis. We encourage the use of Bayesian modeling when dealing with circumplex structure and recommend the use of higher-level scores for interpersonal problems as parsimonious, reliable, and valid measures.

摘要

人际行为方面的困难通常通过基于人际问题环状模型的人际问题量表来衡量。其八个分量表可以由一个三因素结构来表示,包括两个环状因素——支配性和爱,以及一个一般问题因素——苦恼。贝叶斯验证性因素分析非常适合评估人际问题的更高层次结构,因为环状负荷先验允许数据驱动的调整,并且比传统的最大似然验证性因素分析更灵活地研究理想的环状模式。使用来自在线问卷调查研究的非临床样本(n = 822),我们通过最大似然法和贝叶斯验证性因素分析复制了人际问题量表的三因素结构,并发现贝叶斯负荷与完美环状性非常接近。通过在分析中纳入外部标准——大五人格中的宜人性、外向性和神经质以及亚临床夸大自恋,我们发现了对人际问题量表三因素模型有效性的额外支持。我们还使用传统回归因素得分和加权总和得分研究了支配性、爱和苦恼的更高层次得分。我们发现两种计分方法中支配性、爱和苦恼的信度都非常高(α≥0.90)。我们发现更高层次得分与潜在因素高度一致,并且计分模型具有良好的环状特性。与外部测量的相关模式符合理论预期,并且与因素分析的结果相似。我们鼓励在处理环状结构时使用贝叶斯建模,并建议将人际问题的更高层次得分作为简洁、可靠且有效的测量方法使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c9b/8586698/16ded5978725/fpsyg-12-761378-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验