Santos Anderson K, Gomes Katia N, Parreira Ricardo C, Scalzo Sérgio, Pinto Mauro C X, Santiago Helton C, Birbrair Alexander, Sack Ulrich, Ulrich Henning, Resende Rodrigo R
Laboratório de Sinalização Celular e Nanobiotecnologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
Laboratório de Neuroquímica e Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil.
Stem Cell Rev Rep. 2022 Feb;18(2):732-751. doi: 10.1007/s12015-021-10218-7. Epub 2021 Nov 15.
Stem cell therapy is an interesting approach for neural repair, once it can improve and increase processes, like angiogenesis, neurogenesis, and synaptic plasticity. In this regard, adult neural stem cells (NSC) are studied for their mechanisms of proliferation, differentiation and functionality in neural repair. Here, we describe novel neural differentiation methods. NSC from adult mouse brains and human adipose-derived stem cells (hADSC) were isolated and characterized regarding their neural differentiation potential based on neural marker expression profiles. For both cell types, their capabilities of differentiating into neuron-, astrocyte- and oligodendrocytes-like cells (NLC, ALC and OLC, respectively) were analyzed. Our methodologies were capable of producing NLC, ALC and OLC from adult murine and human transdifferentiated NSC. NSC showed augmented gene expression of NES, TUJ1, GFAP and PDGFRA/Cnp. Following differentiation induction into NLC, OLC or ALC, specific neural phenotypes were obtained expressing MAP2, GalC/O4 or GFAP with compatible morphologies, respectively. Accordingly, immunostaining for nestin in NSC, GFAP in astrocytes and GalC/O4 in oligodendrocytes was detected. Co-cultured NLC and OLC showed excitability in 81.3% of cells and 23.5% of neuron/oligodendrocyte marker expression overlap indicating occurrence of in vitro myelination. We show here that hADSC can be transdifferentiated into NSC and distinct neural phenotypes with the occurrence of neuron myelination in vitro, providing novel strategies for CNS regeneration therapy. Superior Part: Schematic organization of obtaining and generating hNSC from hADSC and differentiation processes and phenotypic expression of neuron, astrocyte and oligodendrocyte markers (MAP2, GFAP and O4, respectively) and stem cell marker (NES) of differentiating hNSC 14 days after induction. The nuclear staining in blue corresponds to DAPI. bar = 100 μm. Inferior part: Neural phenotype fates in diverse differentiation media. NES: nestin; GFAP: Glial fibrillary acidic protein. MAP2: Microtubule-associated protein 2. TUJ1: β-III tubulin. PDGFRA: PDGF receptor alpha. Two-way ANOVA with Bonferroni post-test with n = 3. * p < 0.05 and ** p < 0.01: (NSCiM1 NSC induction medium 1) vs differentiation media.
干细胞疗法是一种用于神经修复的有趣方法,因为它可以改善和促进诸如血管生成、神经发生和突触可塑性等过程。在这方面,人们对成年神经干细胞(NSC)在神经修复中的增殖、分化和功能机制进行了研究。在此,我们描述了新的神经分化方法。分离了成年小鼠脑内的NSC和人脂肪来源干细胞(hADSC),并根据神经标志物表达谱对它们的神经分化潜能进行了表征。对于这两种细胞类型,分析了它们分化为神经元样、星形胶质细胞样和少突胶质细胞样细胞(分别为NLC、ALC和OLC)的能力。我们的方法能够从成年小鼠和人转分化的NSC中产生NLC、ALC和OLC。NSC显示NES、TUJ1、GFAP和PDGFRA/Cnp的基因表达增加。在诱导分化为NLC、OLC或ALC后,分别获得了表达MAP2、GalC/O4或GFAP且具有相应形态的特定神经表型。相应地,检测到NSC中巢蛋白、星形胶质细胞中GFAP和少突胶质细胞中GalC/O4的免疫染色。共培养的NLC和OLC中,81.3%的细胞显示出兴奋性,23.5%的细胞表达神经元/少突胶质细胞标志物有重叠,表明体外发生了髓鞘形成。我们在此表明,hADSC可以转分化为NSC和不同的神经表型,且体外发生了神经元髓鞘形成,为中枢神经系统再生治疗提供了新策略。上部:从hADSC获得和生成hNSC的示意图组织以及分化过程和诱导14天后分化的hNSC的神经元、星形胶质细胞和少突胶质细胞标志物(分别为MAP2、GFAP和O4)及干细胞标志物(NES)的表型表达。蓝色的核染色对应于DAPI。标尺 = 100μm。下部:不同分化培养基中的神经表型命运。NES:巢蛋白;GFAP:胶质纤维酸性蛋白。MAP2:微管相关蛋白2。TUJ1:β-III微管蛋白。PDGFRA:血小板衍生生长因子受体α。采用双向方差分析和Bonferroni事后检验,n = 3。*p < 0.05,**p < 0.01:(NSCiM1 NSC诱导培养基1)与分化培养基相比。