Suppr超能文献

通过腔侧壁上的两个小吸收盘捕获在任意长度和半径的圆柱形腔内扩散的粒子:窄逃逸理论及其他。

Trapping of particles diffusing in cylindrical cavity of arbitrary length and radius by two small absorbing disks on the cavity side wall: Narrow escape theory and beyond.

作者信息

Dagdug Leonardo, Berezhkovskii Alexander M

机构信息

Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, 09340 Mexico City, Mexico.

Section of Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20819, USA.

出版信息

J Chem Phys. 2024 Jul 21;161(3). doi: 10.1063/5.0211411.

Abstract

Narrow escape theory deals with the first passage of a particle diffusing in a cavity with small circular windows on the cavity wall to one of the windows. Assuming that (i) the cavity has no size anisotropy and (ii) all windows are sufficiently far away from each other, the theory provides an analytical expression for the particle mean first-passage time (MFPT) to one of the windows. This expression shows that the MFPT depends on the only global parameter of the cavity, its volume, independent of the cavity shape, and is inversely proportional to the product of the particle diffusivity and the sum of the window radii. Amazing simplicity and universality of this result raises the question of the range of its applicability. To shed some light on this issue, we study the narrow escape problem in a cylindrical cavity of arbitrary size anisotropy with two small windows arbitrarily located on the cavity side wall. We derive an approximate analytical solution for the MFPT, which smoothly goes from the conventional narrow escape solution in an isotropic cavity when the windows are sufficiently far away from each other to a qualitatively different solution in a long cylindrical cavity (the cavity length significantly exceeds its radius). Our solution demonstrates the mutual influence of the windows on the MFPT and shows how it depends on the inter-window distance. A key step in finding the solution is an approximate replacement of the initial three-dimensional problem by an equivalent one-dimensional one, where the particle diffuses along the cavity axis and the small absorbing windows are modeled by delta-function sinks. Brownian dynamics simulations are used to establish the range of applicability of our approximate approach and to learn what it means that the two windows are far away from each other.

摘要

窄逃逸理论研究的是在腔壁上有小圆形窗口的腔内扩散的粒子首次到达其中一个窗口的问题。假设(i)腔没有尺寸各向异性,且(ii)所有窗口彼此相距足够远,该理论给出了粒子到达其中一个窗口的平均首次通过时间(MFPT)的解析表达式。这个表达式表明,MFPT仅取决于腔的唯一全局参数,即其体积,与腔的形状无关,并且与粒子扩散率和窗口半径之和的乘积成反比。这一结果惊人的简单性和普遍性引发了其适用范围的问题。为了阐明这个问题,我们研究了一个具有任意尺寸各向异性的圆柱形腔内的窄逃逸问题,腔内有两个任意位于侧壁上的小窗口。我们推导了MFPT的近似解析解,当窗口彼此相距足够远时,该解从各向同性腔内的传统窄逃逸解平滑过渡到长圆柱形腔内(腔的长度远大于其半径)性质不同的解。我们的解展示了窗口对MFPT的相互影响,并表明它如何取决于窗口间的距离。求解的关键步骤是用一个等效的一维问题近似替代初始的三维问题,其中粒子沿腔轴扩散,小吸收窗口由狄拉克函数汇建模。布朗动力学模拟用于确定我们近似方法的适用范围,并了解两个窗口彼此相距很远意味着什么。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b2a/11251734/297b335894ad/JCPSA6-000161-034107_1-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验