Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520.
Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520.
Proc Natl Acad Sci U S A. 2021 Nov 23;118(47). doi: 10.1073/pnas.2107682118.
Cholesterol biosynthetic intermediates, such as lanosterol and desmosterol, are emergent immune regulators of macrophages in response to inflammatory stimuli or lipid overloading, respectively. However, the participation of these sterols in regulating macrophage functions in the physiological context of atherosclerosis, an inflammatory disease driven by the accumulation of cholesterol-laden macrophages in the artery wall, has remained elusive. Here, we report that desmosterol, the most abundant cholesterol biosynthetic intermediate in human coronary artery lesions, plays an essential role during atherogenesis, serving as a key molecule integrating cholesterol homeostasis and immune responses in macrophages. Depletion of desmosterol in myeloid cells by overexpression of 3β-hydroxysterol Δ-reductase (DHCR24), the enzyme that catalyzes conversion of desmosterol to cholesterol, promotes the progression of atherosclerosis. Single-cell transcriptomics in isolated CD45CD11b cells from atherosclerotic plaques demonstrate that depletion of desmosterol increases interferon responses and attenuates the expression of antiinflammatory macrophage markers. Lipidomic and transcriptomic analysis of in vivo macrophage foam cells demonstrate that desmosterol is a major endogenous liver X receptor (LXR) ligand involved in LXR/retinoid X receptor (RXR) activation and thus macrophage foam cell formation. Decreased desmosterol accumulation in mitochondria promotes macrophage mitochondrial reactive oxygen species production and NLR family pyrin domain containing 3 (NLRP3)-dependent inflammasome activation. Deficiency of NLRP3 or apoptosis-associated speck-like protein containing a CARD (ASC) rescues the increased inflammasome activity and atherogenesis observed in desmosterol-depleted macrophages. Altogether, these findings underscore the critical function of desmosterol in the atherosclerotic plaque to dampen inflammation by integrating with macrophage cholesterol metabolism and inflammatory activation and protecting from disease progression.
胆固醇生物合成中间体,如羊毛甾醇和去甲固醇,分别是巨噬细胞对炎症刺激或脂质过载的免疫反应的新兴调节剂。然而,这些固醇在调节动脉粥样硬化(一种由富含胆固醇的巨噬细胞在动脉壁中积累引起的炎症性疾病)的生理背景下的巨噬细胞功能中的参与仍然难以捉摸。在这里,我们报告说,去甲固醇是人类冠状动脉病变中最丰富的胆固醇生物合成中间体,在动脉粥样硬化形成过程中起着至关重要的作用,作为一种整合胆固醇稳态和巨噬细胞免疫反应的关键分子。通过过表达 3β-羟甾醇 Δ-还原酶(DHCR24),即催化去甲固醇转化为胆固醇的酶,在髓样细胞中耗尽去甲固醇会促进动脉粥样硬化的进展。从动脉粥样硬化斑块中分离出的 CD45CD11b 细胞的单细胞转录组学研究表明,去甲固醇的耗竭会增加干扰素反应并减弱抗炎性巨噬细胞标志物的表达。体内巨噬细胞泡沫细胞的脂质组学和转录组学分析表明,去甲固醇是一种主要的内源性肝 X 受体(LXR)配体,参与 LXR/视黄酸受体(RXR)的激活,从而促进巨噬细胞泡沫细胞的形成。在线粒体中去甲固醇积累的减少会促进巨噬细胞线粒体活性氧的产生和 NLR 家族包含 pyrin 结构域的 3(NLRP3)依赖性炎性小体的激活。NLRP3 或凋亡相关斑点样蛋白包含一个 CARD(ASC)的缺失可挽救去甲固醇耗尽的巨噬细胞中观察到的炎性小体活性增加和动脉粥样硬化形成。总之,这些发现强调了去甲固醇在动脉粥样硬化斑块中的关键功能,通过与巨噬细胞胆固醇代谢和炎症激活相整合,来抑制炎症并防止疾病进展。