Suppr超能文献

机器学习模型在无症状成年人颈动脉粥样硬化筛查中的应用。

Machine learning models for screening carotid atherosclerosis in asymptomatic adults.

机构信息

Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.

Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.

出版信息

Sci Rep. 2021 Nov 15;11(1):22236. doi: 10.1038/s41598-021-01456-3.

Abstract

Carotid atherosclerosis (CAS) is a risk factor for cardiovascular and cerebrovascular events, but duplex ultrasonography isn't recommended in routine screening for asymptomatic populations according to medical guidelines. We aim to develop machine learning models to screen CAS in asymptomatic adults. A total of 2732 asymptomatic subjects for routine physical examination in our hospital were included in the study. We developed machine learning models to classify subjects with or without CAS using decision tree, random forest (RF), extreme gradient boosting (XGBoost), support vector machine (SVM) and multilayer perceptron (MLP) with 17 candidate features. The performance of models was assessed on the testing dataset. The model using MLP achieved the highest accuracy (0.748), positive predictive value (0.743), F1 score (0.742), area under receiver operating characteristic curve (AUC) (0.766) and Kappa score (0.445) among all classifiers. It's followed by models using XGBoost and SVM. In conclusion, the model using MLP is the best one to screen CAS in asymptomatic adults based on the results from routine physical examination, followed by using XGBoost and SVM. Those models may provide an effective and applicable method for physician and primary care doctors to screen asymptomatic CAS without risk factors in general population, and improve risk predictions and preventions of cardiovascular and cerebrovascular events in asymptomatic adults.

摘要

颈动脉粥样硬化(CAS)是心血管和脑血管事件的危险因素,但根据医学指南,对于无症状人群,不建议常规进行双功能超声检查。我们旨在开发机器学习模型,以筛查无症状成年人的 CAS。本研究共纳入我院 2732 名常规体检的无症状受试者。我们使用决策树、随机森林(RF)、极端梯度提升(XGBoost)、支持向量机(SVM)和多层感知器(MLP)等 17 个候选特征,开发了用于分类有无 CAS 的机器学习模型。在测试数据集上评估了模型的性能。在所有分类器中,使用 MLP 的模型的准确率(0.748)、阳性预测值(0.743)、F1 评分(0.742)、接受者操作特征曲线下面积(AUC)(0.766)和 Kappa 评分(0.445)最高。其次是使用 XGBoost 和 SVM 的模型。总之,基于常规体检结果,使用 MLP 的模型是筛查无症状成年人 CAS 的最佳模型,其次是使用 XGBoost 和 SVM 的模型。这些模型可为一般人群中无危险因素的无症状 CAS 筛查提供有效且适用的方法,从而改善无症状成年人的心血管和脑血管事件的风险预测和预防。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb59/8593081/e339d28b3d30/41598_2021_1456_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验