Suppr超能文献

多类别机器学习与传统计算器在使用颈动脉斑块预测因子和冠状动脉造影评分作为金标准进行中风/CVD 风险评估中的比较:一项 500 名参与者的研究。

Multiclass machine learning vs. conventional calculators for stroke/CVD risk assessment using carotid plaque predictors with coronary angiography scores as gold standard: a 500 participants study.

机构信息

Department of Electronics and Communications Engineering, Visvesvaraya National Institute of Technology, Nagpur, MH, India.

Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.

出版信息

Int J Cardiovasc Imaging. 2021 Apr;37(4):1171-1187. doi: 10.1007/s10554-020-02099-7. Epub 2020 Nov 12.

Abstract

Machine learning (ML)-based algorithms for cardiovascular disease (CVD) risk assessment have shown promise in clinical decisions. However, they usually predict binary events using only conventional risk factors. Our overall goal was to develop the "multiclass machine learning (MCML)-based algorithms" (labelled as AtheroEdge 3.0) and assess whether considering carotid ultrasound imaging fused with conventional risk factors can provide better CVD/stroke risk prediction than conventional CVD risk calculators (CCVRC). Carotid ultrasound and coronary angiography were performed on 500 participants. Stenosis in the coronary arteries was used to assign participants a coronary angiographic score (CAS). CVD/stroke risk was determined using three types of MCML algorithms: (i) support vector machine (SVM), (ii) random forest (RF), and (iii) extreme gradient boost (XGBoost). The performance of CVD risk assessment using MCML and CCVRC (such as Framingham Risk Score, the Systematic Coronary Risk Evaluation score, and the Atherosclerotic CVD) was evaluated on test patients against the CAS as the gold standard for each class using the area-under-the-curve (AUC) and classification accuracy. The mean percentage improvement in AUC and the mean absolute improvement in accuracy over CCVRC using 90% training and 10% testing protocol (labelled as K10) were ~ 105% and ~ 28%, respectively. Of all the three MCML systems, RF showed the best performance. Further, carotid image phenotypes showed the most effective clinical feature in AtheroEdge 3.0 performance. The AtheroEdge 3.0 using carotid imaging are reliable, accurate, and superior to traditional CVD risk scoring methods for predicting the CVD/stroke risk due to coronary artery disease.

摘要

基于机器学习(ML)的心血管疾病(CVD)风险评估算法在临床决策中显示出了前景。然而,它们通常仅使用传统风险因素来预测二分类事件。我们的总体目标是开发“基于多类机器学习(MCML)的算法”(标记为 AtheroEdge 3.0),并评估在考虑颈动脉超声成像与传统风险因素融合的情况下,是否能提供比传统 CVD 风险计算器(CCVRC)更好的 CVD/中风风险预测。对 500 名参与者进行了颈动脉超声和冠状动脉造影检查。冠状动脉狭窄程度用于为参与者分配冠状动脉造影评分(CAS)。使用三种类型的 MCML 算法来确定 CVD/中风风险:(i)支持向量机(SVM)、(ii)随机森林(RF)和(iii)极端梯度提升(XGBoost)。使用 MCML 和 CCVRC(如 Framingham 风险评分、系统性冠状动脉风险评估评分和动脉粥样硬化性 CVD)对测试患者进行 CVD 风险评估的性能,将 CAS 作为每个类别的金标准,使用曲线下面积(AUC)和分类准确性进行评估。使用 90%的训练数据和 10%的测试数据(标记为 K10),AUC 的平均百分比提高和准确性的平均绝对提高分别约为 105%和 28%。在所有三种 MCML 系统中,RF 表现出最好的性能。此外,颈动脉图像表型在 AtheroEdge 3.0 性能中显示出最有效的临床特征。AtheroEdge 3.0 使用颈动脉成像,对于预测由于冠状动脉疾病引起的 CVD/中风风险,是可靠、准确且优于传统 CVD 风险评分方法的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验