Xu Ning, Liu Yun-Peng, Zhang Yan, Geng Xin
IEEE Trans Neural Netw Learn Syst. 2023 Aug;34(8):4856-4867. doi: 10.1109/TNNLS.2021.3125366. Epub 2023 Aug 4.
Partial multi-label learning (PML) aims to learn a multilabel predictive model from the PML training examples, each of which is associated with a set of candidate labels where only a subset is valid. The common strategy to induce a predictive model is identifying the valid labels in each candidate label set. Nonetheless, this strategy ignores considering the essential label distribution corresponding to each instance as label distributions are not explicitly available in the training dataset. In this article, a novel partial multilabel learning method is proposed to recover the latent label distribution and progressively enhance it for predictive model induction. Specifically, the label distribution is recovered by considering the observation model for logical labels and the sharing topological structure from feature space to label distribution space. Besides, the latent label distribution is progressively enhanced by recovering latent labeling information and supervising predictive model training alternatively to make the label distribution appropriate for the induced predictive model. Experimental results on PML datasets clearly validate the effectiveness of the proposed method for solving partial multilabel learning problems. In addition, further experiments show the high quality of the recovered label distributions and the effectiveness of adopting label distributions for partial multilabel learning.
部分多标签学习(PML)旨在从PML训练示例中学习多标签预测模型,每个训练示例都与一组候选标签相关联,其中只有一个子集是有效的。诱导预测模型的常见策略是识别每个候选标签集中的有效标签。然而,该策略忽略了考虑与每个实例对应的基本标签分布,因为训练数据集中没有明确提供标签分布。在本文中,提出了一种新颖的部分多标签学习方法,以恢复潜在标签分布并逐步增强它以进行预测模型诱导。具体来说,通过考虑逻辑标签的观测模型以及从特征空间到标签分布空间的共享拓扑结构来恢复标签分布。此外,通过交替恢复潜在标签信息和监督预测模型训练来逐步增强潜在标签分布,以使标签分布适合诱导的预测模型。在PML数据集上的实验结果清楚地验证了所提出方法解决部分多标签学习问题的有效性。此外,进一步的实验表明了恢复的标签分布的高质量以及采用标签分布进行部分多标签学习的有效性。