Suppr超能文献

An Alternating-Direction-Method of Multipliers-Incorporated Approach to Symmetric Non-Negative Latent Factor Analysis.

作者信息

Luo Xin, Zhong Yurong, Wang Zidong, Li Maozhen

出版信息

IEEE Trans Neural Netw Learn Syst. 2023 Aug;34(8):4826-4840. doi: 10.1109/TNNLS.2021.3125774. Epub 2023 Aug 4.

Abstract

Large-scale undirected weighted networks are frequently encountered in big-data-related applications concerning interactions among a large unique set of entities. Such a network can be described by a Symmetric, High-Dimensional, and Incomplete (SHDI) matrix whose symmetry and incompleteness should be addressed with care. However, existing models fail in either correctly representing its symmetry or efficiently handling its incomplete data. For addressing this critical issue, this study proposes an Alternating-Direction-Method of Multipliers (ADMM)-based Symmetric Non-negative Latent Factor Analysis (ASNL) model. It adopts fourfold ideas: 1) implementing the data density-oriented modeling for efficiently representing an SHDI matrix's incomplete and imbalanced data; 2) separating the non-negative constraints from the decision parameters to avoid truncations during the training process; 3) incorporating the ADMM principle into its learning scheme for fast model convergence; and 4) parallelizing the training process with load balance considerations for high efficiency. Empirical studies on four SHDI matrices demonstrate that ASNL significantly outperforms several state-of-the-art models in both prediction accuracy for missing data of an SHDI and computational efficiency. It is a promising model for handling large-scale undirected networks raised in real applications.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验