Luo Xin, Wu Hao, Yuan Huaqiang, Zhou MengChu
IEEE Trans Cybern. 2020 May;50(5):1798-1809. doi: 10.1109/TCYB.2019.2903736. Epub 2019 Apr 4.
Quality-of-service (QoS) data vary over time, making it vital to capture the temporal patterns hidden in such dynamic data for predicting missing ones with high accuracy. However, currently latent factor (LF) analysis-based QoS-predictors are mostly defined on static QoS data without the consideration of such temporal dynamics. To address this issue, this paper presents a biased non-negative latent factorization of tensors (BNLFTs) model for temporal pattern-aware QoS prediction. Its main idea is fourfold: 1) incorporating linear biases into the model for describing QoS fluctuations; 2) constraining the model to be non-negative for describing QoS non-negativity; 3) deducing a single LF-dependent, non-negative, and multiplicative update scheme for training the model; and 4) incorporating an alternating direction method into the model for faster convergence. The empirical studies on two dynamic QoS datasets from real applications show that compared with the state-of-the-art QoS-predictors, BNLFT represents temporal patterns more precisely with high computational efficiency, thereby achieving the most accurate predictions for missing QoS data.
服务质量(QoS)数据随时间变化,因此捕捉此类动态数据中隐藏的时间模式以高精度预测缺失数据至关重要。然而,目前基于潜在因子(LF)分析的QoS预测器大多是在静态QoS数据上定义的,没有考虑这种时间动态性。为了解决这个问题,本文提出了一种用于时间模式感知QoS预测的张量偏置非负潜在因子分解(BNLFTs)模型。其主要思想有四点:1)将线性偏差纳入模型以描述QoS波动;2)将模型约束为非负以描述QoS的非负性;3)推导一种依赖于单个LF的、非负的和乘法更新方案来训练模型;4)将交替方向法纳入模型以实现更快的收敛。对来自实际应用的两个动态QoS数据集的实证研究表明,与最先进的QoS预测器相比,BNLFT以高计算效率更精确地表示时间模式,从而对缺失的QoS数据实现最准确的预测。