Suppr超能文献

人类流感病毒挑战鉴定口服疫苗保护的细胞相关性。

Human influenza virus challenge identifies cellular correlates of protection for oral vaccination.

机构信息

Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA; WCCT Global, Cypress, CA, USA.

Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.

出版信息

Cell Host Microbe. 2021 Dec 8;29(12):1828-1837.e5. doi: 10.1016/j.chom.2021.10.009. Epub 2021 Nov 15.

Abstract

Developing new influenza vaccines with improved performance and easier administration routes hinges on defining correlates of protection. Vaccine-elicited cellular correlates of protection for influenza in humans have not yet been demonstrated. A phase-2 double-blind randomized placebo and active (inactivated influenza vaccine) controlled study provides evidence that a human-adenovirus-5-based oral influenza vaccine tablet (VXA-A1.1) can protect from H1N1 virus challenge in humans. Mass cytometry characterization of vaccine-elicited cellular immune responses identified shared and vaccine-type-specific responses across B and T cells. For VXA-A1.1, the abundance of hemagglutinin-specific plasmablasts and plasmablasts positive for integrin α4β7, phosphorylated STAT5, or lacking expression of CD62L at day 8 were significantly correlated with protection from developing viral shedding following virus challenge at day 90 and contributed to an effective machine learning model of protection. These findings reveal the characteristics of vaccine-elicited cellular correlates of protection for an oral influenza vaccine.

摘要

开发具有更好性能和更便捷给药途径的新型流感疫苗,关键在于确定保护相关因素。尚未证明人类流感疫苗诱导的细胞保护相关因素。一项 2 期双盲随机安慰剂和活性(灭活流感疫苗)对照研究提供了证据,证明基于人腺病毒 5 的口服流感疫苗片剂(VXA-A1.1)可预防人类 H1N1 病毒挑战。疫苗诱导的细胞免疫反应的质谱细胞术特征鉴定了 B 和 T 细胞之间的共享和疫苗类型特异性反应。对于 VXA-A1.1,在第 8 天,针对血凝素的浆母细胞和整合素 α4β7 阳性的浆母细胞、磷酸化 STAT5 或缺乏 CD62L 表达的数量与在第 90 天病毒挑战后防止病毒脱落的保护呈显著相关,并有助于建立有效的保护机器学习模型。这些发现揭示了口服流感疫苗诱导的细胞保护相关因素的特征。

相似文献

1
Human influenza virus challenge identifies cellular correlates of protection for oral vaccination.
Cell Host Microbe. 2021 Dec 8;29(12):1828-1837.e5. doi: 10.1016/j.chom.2021.10.009. Epub 2021 Nov 15.
2
Efficacy, immunogenicity, and safety of an oral influenza vaccine: a placebo-controlled and active-controlled phase 2 human challenge study.
Lancet Infect Dis. 2020 Apr;20(4):435-444. doi: 10.1016/S1473-3099(19)30584-5. Epub 2020 Jan 21.
5
Hemagglutinin-specific CD4 T-cell responses following 2009-pH1N1 inactivated split-vaccine inoculation in humans.
Vaccine. 2017 Oct 9;35(42):5644-5652. doi: 10.1016/j.vaccine.2017.08.061. Epub 2017 Sep 13.
6
Aerosol Delivery of a Candidate Universal Influenza Vaccine Reduces Viral Load in Pigs Challenged with Pandemic H1N1 Virus.
J Immunol. 2016 Jun 15;196(12):5014-23. doi: 10.4049/jimmunol.1502632. Epub 2016 May 6.
7
Egg-based influenza split virus vaccine with monoglycosylation induces cross-strain protection against influenza virus infections.
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4200-4205. doi: 10.1073/pnas.1819197116. Epub 2019 Feb 19.

引用本文的文献

1
The Application of Single-Cell Technologies for Vaccine Development Against Viral Infections.
Vaccines (Basel). 2025 Jun 26;13(7):687. doi: 10.3390/vaccines13070687.
3
Development of an intranasal, universal influenza vaccine in an EU-funded public-private partnership: the FLUniversal consortium.
Front Immunol. 2025 May 23;16:1568778. doi: 10.3389/fimmu.2025.1568778. eCollection 2025.
10
Tissue-specific sex differences in pediatric and adult immune cell composition and function.
Front Immunol. 2024 May 15;15:1373537. doi: 10.3389/fimmu.2024.1373537. eCollection 2024.

本文引用的文献

1
A Comprehensive Atlas of Immunological Differences Between Humans, Mice, and Non-Human Primates.
Front Immunol. 2022 Mar 11;13:867015. doi: 10.3389/fimmu.2022.867015. eCollection 2022.
2
Mass Cytometry Defines Virus-Specific CD4 T Cells in Influenza Vaccination.
Immunohorizons. 2020 Dec 11;4(12):774-788. doi: 10.4049/immunohorizons.1900097.
4
Ikaros antagonizes DNA binding by STAT5 in pre-B cells.
PLoS One. 2020 Nov 12;15(11):e0242211. doi: 10.1371/journal.pone.0242211. eCollection 2020.
5
Single-Cell Profiling of Ebola Virus Disease In Vivo Reveals Viral and Host Dynamics.
Cell. 2020 Nov 25;183(5):1383-1401.e19. doi: 10.1016/j.cell.2020.10.002. Epub 2020 Nov 6.
6
Landscape of coordinated immune responses to H1N1 challenge in humans.
J Clin Invest. 2020 Nov 2;130(11):5800-5816. doi: 10.1172/JCI137265.
7
Single-cell metabolic profiling of human cytotoxic T cells.
Nat Biotechnol. 2021 Feb;39(2):186-197. doi: 10.1038/s41587-020-0651-8. Epub 2020 Aug 31.
8
VoPo leverages cellular heterogeneity for predictive modeling of single-cell data.
Nat Commun. 2020 Jul 27;11(1):3738. doi: 10.1038/s41467-020-17569-8.
9
Immunologic timeline of Ebola virus disease and recovery in humans.
JCI Insight. 2020 May 21;5(10):137260. doi: 10.1172/jci.insight.137260.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验