Suppr超能文献

中国上海城市超细颗粒物暴露评估的高空间分辨率土地利用回归模型。

High spatial resolution land-use regression model for urban ultrafine particle exposure assessment in Shanghai, China.

机构信息

School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.

Shanghai Environmental Monitoring Center, Shanghai 200233, China.

出版信息

Sci Total Environ. 2022 Apr 10;816:151633. doi: 10.1016/j.scitotenv.2021.151633. Epub 2021 Nov 13.

Abstract

BACKGROUND

Little is currently known about long-term health effects of ambient ultrafine particles (UFPs) due to the lack of exposure assessment metrics suitable for use in large population-based studies. Land use regression (LUR) models have been used increasingly for modeling small-scale spatial variation in UFPs concentrations in European and American, but have never been applied in developing countries with heavy air pollution.

OBJECTIVE

This study developed a land-use regression (LUR) model for UFP exposure assessment in Shanghai, a typic mega city of China, where dense population resides.

METHOD

A 30-minute measurement of particle number concentrations of UFPs was collected at each visit at 144 fixed sites, and each was visited three times in each season of winter, spring, and summer. The annual adjusted average was calculated and regressed against pre-selected geographic information system-derived predictor variables using a stepwise variable selection method.

RESULT

The final LUR model explained 69% of the spatial variability in UFP with a root mean square error of 6008 particles cm. The 10-fold cross validation R reached 0.68, revealing the robustness of the model. The final predictors included traffic-related NO emissions, number of restaurants, building footprint area, and distance to the nearest national road. These predictors were within a relatively small buffer size, ranging from 50 m to 100 m, indicating great spatial variations of UFP particle number concentration and the need of high-resolution models for UFP exposure assessment in urban areas.

CONCLUSION

We concluded that based on a purpose-designed short-term monitoring network, LUR model can be applied to predict UFPs spatial surface in a mega city of China. Majority of the spatial variability in the annual mean of ambient UFP was explained in the model comprised primarily of traffic-, building-, and restaurant-related predictors.

摘要

背景

由于缺乏适合于大规模人群研究使用的暴露评估指标,目前人们对环境超细颗粒物(UFPs)的长期健康影响知之甚少。土地利用回归(LUR)模型已越来越多地用于模拟欧洲和北美的 UFPs 浓度的小尺度空间变化,但从未应用于空气污染严重的发展中国家。

目的

本研究开发了一种用于中国特大型城市上海 UFPs 暴露评估的土地利用回归(LUR)模型,上海人口密集。

方法

在每个季节的冬季、春季和夏季,在 144 个固定站点的每个站点进行 30 分钟的 UFPs 粒子数浓度测量。在每个季节的三次访问中,计算并回归每年调整后的平均浓度与预选择的地理信息系统衍生预测变量。

结果

最终的 LUR 模型解释了 UFPs 空间变异性的 69%,均方根误差为 6008 个粒子/cm。10 倍交叉验证 R 达到 0.68,表明模型的稳健性。最终的预测因子包括与交通相关的 NO 排放、餐馆数量、建筑面积和到最近的国道的距离。这些预测因子位于相对较小的缓冲区大小内,范围从 50 米到 100 米,表明 UFPs 粒子数浓度的空间变化很大,需要用于城市地区 UFPs 暴露评估的高分辨率模型。

结论

我们的结论是,基于专门设计的短期监测网络,LUR 模型可用于预测中国特大型城市 UFPs 的空间表面。模型解释了 UFPs 年平均浓度的大部分空间变异性,模型主要由交通、建筑和餐馆相关的预测因子组成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验