Martyka Mikołaj, Zhang Lina, Ge Fuchun, Hou Yi-Fan, Jankowska Joanna, Barbatti Mario, Dral Pavlo O
University of Warsaw, Faculty of Chemistry, 02-093 Warsaw, Poland.
State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, Fujian China.
NPJ Comput Mater. 2025;11(1):132. doi: 10.1038/s41524-025-01636-z. Epub 2025 May 13.
We present a robust protocol for affordable learning of electronic states to accelerate photophysical and photochemical molecular simulations. The protocol solves several issues precluding the widespread use of machine learning (ML) in excited-state simulations. We introduce a novel physics-informed multi-state ML model that can learn an arbitrary number of excited states across molecules, with accuracy better or similar to the accuracy of learning ground-state energies, where information on excited-state energies improves the quality of ground-state predictions. We also present gap-driven dynamics for accelerated sampling of the small-gap regions, which proves crucial for stable surface-hopping dynamics. Together, multi-state learning and gap-driven dynamics enable efficient active learning, furnishing robust models for surface-hopping simulations and helping to uncover long-time-scale oscillations in -azobenzene photoisomerization. Our active-learning protocol includes sampling based on physics-informed uncertainty quantification, ensuring the quality of each adiabatic surface, low error in energy gaps, and precise calculation of the hopping probability.
我们提出了一种用于经济高效地学习电子态以加速光物理和光化学分子模拟的稳健协议。该协议解决了几个阻碍机器学习(ML)在激发态模拟中广泛应用的问题。我们引入了一种新颖的物理信息多态ML模型,该模型可以跨分子学习任意数量的激发态,其准确性优于或类似于学习基态能量的准确性,其中激发态能量的信息提高了基态预测的质量。我们还提出了用于加速小能隙区域采样的能隙驱动动力学,这被证明对稳定的表面跳跃动力学至关重要。多态学习和能隙驱动动力学共同实现了高效的主动学习,为表面跳跃模拟提供了稳健的模型,并有助于揭示偶氮苯光异构化中的长时间尺度振荡。我们的主动学习协议包括基于物理信息不确定性量化的采样,确保每个绝热表面的质量、能隙中的低误差以及跳跃概率的精确计算。