Suppr超能文献

功能化基于框架核酸的纳米结构用于生物医学应用。

Functionalizing Framework Nucleic-Acid-Based Nanostructures for Biomedical Application.

作者信息

Zhang Tao, Tian Taoran, Lin Yunfeng

机构信息

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.

State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China.

出版信息

Adv Mater. 2022 Nov;34(46):e2107820. doi: 10.1002/adma.202107820. Epub 2022 Feb 20.

Abstract

Strategies for functionalizing diverse tetrahedral framework nucleic acids (tFNAs) have been extensively explored since the first successful fabrication of tFNA by Turberfield. One-pot annealing of at least four DNA single strands is the most common method to prepare tFNA, as it optimizes the cost, yield, and speed of assembly. Herein, the focus is on four key merits of tFNAs and their potential for biomedical applications. The natural ability of tFNA to scavenge reactive oxygen species, along with remarkable enhancement in cellular endocytosis and tissue permeability based on its appropriate size and geometry, promotes cell-material interactions to direct or probe cell behavior, especially to treat inflammatory and degenerative diseases. Moreover, the structural programmability of tFNA enables the development of static tFNA-based nanomaterials via engineering of functional oligonucleotides or therapeutic molecules, and dynamic tFNAs via attachment of stimuli-responsive DNA apparatuses, leading to potential applications in targeted therapies, tissue regeneration, antitumor strategies, and antibacterial treatment. Although there are impressive performance and significant progress, the challenges and prospects of functionalizing tFNA-based nanostructures are still indicated in this review.

摘要

自从Turberfield首次成功制备四面体框架核酸(tFNA)以来,人们对多种tFNA进行功能化的策略进行了广泛探索。至少四条DNA单链一锅退火是制备tFNA最常用的方法,因为它优化了组装的成本、产率和速度。本文重点介绍了tFNA的四个关键优点及其在生物医学应用中的潜力。tFNA清除活性氧的天然能力,以及基于其合适的大小和几何形状在细胞内吞作用和组织通透性方面的显著增强,促进了细胞与材料的相互作用,以指导或探测细胞行为,特别是用于治疗炎症和退行性疾病。此外,tFNA的结构可编程性使得通过功能寡核苷酸或治疗分子的工程设计开发基于静态tFNA的纳米材料,以及通过连接刺激响应性DNA装置开发动态tFNA成为可能,从而在靶向治疗、组织再生、抗肿瘤策略和抗菌治疗中具有潜在应用。尽管有令人印象深刻的性能和重大进展,但本综述仍指出了tFNA基纳米结构功能化的挑战和前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验