Suppr超能文献

自然语言处理和网络分析为围绕可持续发展目标的政策和科学话语提供了新的见解。

Natural language processing and network analysis provide novel insights on policy and scientific discourse around Sustainable Development Goals.

机构信息

Bureau of Economic and Business Research, University of Florida, Gainesville, USA.

Department of Sociology and Criminology and Law, University of Florida, Gainesville, USA.

出版信息

Sci Rep. 2021 Nov 17;11(1):22427. doi: 10.1038/s41598-021-01801-6.

Abstract

The United Nations' (UN) Sustainable Development Goals (SDGs) are heterogeneous and interdependent, comprising 169 targets and 231 indicators of sustainable development in such diverse areas as health, the environment, and human rights. Existing efforts to map relationships among SDGs are either theoretical investigations of sustainability concepts, or empirical analyses of development indicators and policy simulations. We present an alternative approach, which describes and quantifies the complex network of SDG interdependencies by applying computational methods to policy and scientific documents. Methods of Natural Language Processing are used to measure overlaps in international policy discourse around SDGs, as represented by the corpus of all existing UN progress reports about each goal (N = 85 reports). We then examine if SDG interdependencies emerging from UN discourse are reflected in patterns of integration and collaboration in SDG-related science, by analyzing data on all scientific articles addressing relevant SDGs in the past two decades (N = 779,901 articles). Results identify a strong discursive divide between environmental goals and all other SDGs, and unexpected interdependencies between SDGs in different areas. While UN discourse partially aligns with integration patterns in SDG-related science, important differences are also observed between priorities emerging in UN and global scientific discourse. We discuss implications and insights for scientific research and policy on sustainable development after COVID-19.

摘要

联合国可持续发展目标(SDGs)是多样化且相互依存的,涵盖了健康、环境和人权等各个领域的 169 个具体目标和 231 项可持续发展指标。现有的目标关系图绘制工作,要么是对可持续性概念的理论研究,要么是对发展指标和政策模拟的实证分析。我们提出了一种替代方法,通过将计算方法应用于政策和科学文献,来描述和量化可持续发展目标之间复杂的相互依存关系网络。自然语言处理方法用于衡量联合国关于每个目标的所有现有进展报告(N=85 份报告)中关于可持续发展目标的国际政策论述中的重叠程度。然后,我们通过分析过去二十年中涉及相关可持续发展目标的所有科学文章的数据(N=779901 篇文章),来检验联合国话语中出现的可持续发展目标相互依存关系是否反映在与可持续发展目标相关的科学中的整合和协作模式中。结果表明,环境目标与所有其他可持续发展目标之间存在明显的话语分歧,以及不同领域的可持续发展目标之间存在意想不到的相互依存关系。虽然联合国的话语在一定程度上与可持续发展目标相关科学中的整合模式一致,但在联合国和全球科学话语中出现的优先事项之间也存在重要差异。我们讨论了 COVID-19 后可持续发展的科学研究和政策的影响和启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4eb3/8599416/16c5bd9ffd01/41598_2021_1801_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验