Suppr超能文献

现实环境中智能手机GNSS测量的条件设定与PPP处理

Conditioning and PPP processing of smartphone GNSS measurements in realistic environments.

作者信息

Shinghal Ganga, Bisnath Sunil

机构信息

Department of Earth and Space Science and Engineering, Lassonde School of Engineering, York University, Toronto, Canada.

出版信息

Satell Navig. 2021;2(1):10. doi: 10.1186/s43020-021-00042-2. Epub 2021 Apr 19.

Abstract

Smartphones typically compute position using duty-cycled Global Navigation Satellite System (GNSS) L1 code measurements and Single Point Positioning (SPP) processing with the aid of cellular and other measurements. This internal positioning solution has an accuracy of several tens to hundreds of meters in realistic environments (handheld, vehicle dashboard, suburban, urban forested, etc.). With the advent of multi-constellation, dual-frequency GNSS chips in smartphones, along with the ability to extract raw code and carrier-phase measurements, it is possible to use Precise Point Positioning (PPP) to improve positioning without any additional equipment. This research analyses GNSS measurement quality parameters from a Xiaomi MI 8 dual-frequency smartphone in varied, realistic environments. In such environments, the system suffers from frequent phase loss-of-lock leading to data gaps. The smartphone measurements have low and irregular carrier-to-noise (C/N) density ratio and high multipath, which leads to poor or no positioning solution. These problems are addressed by implementing a prediction technique for data gaps and a C/N-based stochastic model for assigning realistic a priori weights to the observables in the PPP processing engine. Using these conditioning techniques, there is a 64% decrease in the horizontal positioning Root Mean Square (RMS) error and 100% positioning solution availability in sub-urban environments tested. The horizontal and 3D RMS were 20 cm and 30 cm respectively in a static open-sky environment and the horizontal RMS for the realistic kinematic scenario was 7 m with the phone on the dashboard of the car, using the SwiftNav Piksi Real-Time Kinematic (RTK) solution as reference. The PPP solution, computed using the YorkU PPP engine, also had a 5-10% percentage point more availability than the RTK solution, computed using RTKLIB software, since missing measurements in the logged file cause epoch rejection and a non-continuous solution, a problem which is solved by prediction for the PPP solution. The internal unaided positioning solution of the phone obtained from the logged NMEA (The National Marine Electronics Association) file was computed using point positioning with the aid of measurements from internal sensors. The PPP solution was 80% more accurate than the internal solution which had periodic drifts due to non-continuous computation of solution.

摘要

智能手机通常利用占空比的全球导航卫星系统(GNSS)L1码测量值,并借助蜂窝网络和其他测量值进行单点定位(SPP)处理来计算位置。在现实环境(手持、车辆仪表盘、郊区、城市森林等)中,这种内部定位解决方案的精度为几十米到几百米。随着智能手机中多星座、双频GNSS芯片的出现,以及提取原始码和载波相位测量值的能力,无需任何额外设备就可以使用精密单点定位(PPP)来提高定位精度。本研究分析了小米MI 8双频智能手机在各种现实环境中的GNSS测量质量参数。在这样的环境中,系统经常出现相位失锁,导致数据间隙。智能手机测量的载波噪声(C/N)密度比低且不规则,多径效应高,这导致定位解很差或无法获得定位解。通过为数据间隙实施预测技术和为PPP处理引擎中的观测值分配实际先验权重的基于C/N的随机模型来解决这些问题。使用这些调节技术,在测试的郊区环境中,水平定位均方根(RMS)误差降低了64%,定位解可用性提高了100%。在静态开阔天空环境中,水平和三维RMS分别为20厘米和30厘米,在现实运动场景中,将手机放在汽车仪表盘上时,使用SwiftNav Piksi实时动态(RTK)解决方案作为参考,水平RMS为7米。使用约克大学PPP引擎计算的PPP解的可用性也比使用RTKLIB软件计算的RTK解高5-10个百分点,因为记录文件中的缺失测量会导致历元拒绝和非连续解,而PPP解通过预测解决了这个问题。从记录的NMEA(美国国家海洋电子协会)文件中获得的手机内部无辅助定位解是借助内部传感器的测量值通过点定位计算得出的。PPP解比由于解的非连续计算而存在周期性漂移的内部解精确80%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b34e/8577807/4021e1e9538a/43020_2021_42_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验