Suppr超能文献

基于常规实验室检测的机器学习对 COVID-19 的检测。

Detection of COVID-19 by Machine Learning Using Routine Laboratory Tests.

机构信息

Interdisciplinary Stem Cells and Regenerative Medicine, Ankara University Stem Cell Institute, Ankara, Turkey.

Departments of Medical Biochemistry and Clinical Microbiology, Başkent University Faculty of Medicine, Ankara, Turkey.

出版信息

Am J Clin Pathol. 2022 May 4;157(5):758-766. doi: 10.1093/ajcp/aqab187.

Abstract

OBJECTIVES

The present study aimed to develop a clinical decision support tool to assist coronavirus disease 2019 (COVID-19) diagnoses with machine learning (ML) models using routine laboratory test results.

METHODS

We developed ML models using laboratory data (n = 1,391) composed of six clinical chemistry (CC) results, 14 CBC parameter results, and results of a severe acute respiratory syndrome coronavirus 2 real-time reverse transcription-polymerase chain reaction as a gold standard method. Four ML algorithms, including random forest (RF), gradient boosting (XGBoost), support vector machine (SVM), and logistic regression, were used to build eight ML models using CBC and a combination of CC and CBC parameters. Performance evaluation was conducted on the test data set and external validation data set from Brazil.

RESULTS

The accuracy values of all models ranged from 74% to 91%. The RF model trained from CC and CBC analytes showed the best performance on the present study's data set (accuracy, 85.3%; sensitivity, 79.6%; specificity, 91.2%). The RF model trained from only CBC parameters detected COVID-19 cases with 82.8% accuracy. The best performance on the external validation data set belonged to the SVM model trained from CC and CBC parameters (accuracy, 91.18%; sensitivity, 100%; specificity, 84.21%).

CONCLUSIONS

ML models presented in this study can be used as clinical decision support tools to contribute to physicians' clinical judgment for COVID-19 diagnoses.

摘要

目的

本研究旨在开发一种临床决策支持工具,利用机器学习 (ML) 模型和常规实验室检测结果辅助 2019 年冠状病毒病 (COVID-19) 的诊断。

方法

我们使用包含 6 项临床化学 (CC) 结果、14 项全血细胞计数 (CBC) 参数结果和严重急性呼吸综合征冠状病毒 2 实时逆转录-聚合酶链反应结果的实验室数据(n=1391)开发了 ML 模型,后者作为金标准方法。我们使用了包括随机森林 (RF)、梯度提升 (XGBoost)、支持向量机 (SVM) 和逻辑回归在内的 4 种 ML 算法,使用 CBC 和 CC 与 CBC 参数组合构建了 8 种 ML 模型。我们在测试数据集和来自巴西的外部验证数据集上进行了性能评估。

结果

所有模型的准确率值在 74%至 91%之间。基于 CC 和 CBC 分析物训练的 RF 模型在本研究的数据集中表现出最佳性能(准确率为 85.3%,敏感度为 79.6%,特异性为 91.2%)。仅基于 CBC 参数训练的 RF 模型可检测 COVID-19 病例,准确率为 82.8%。基于 CC 和 CBC 参数训练的 SVM 模型在外部验证数据集中的表现最佳(准确率为 91.18%,敏感度为 100%,特异性为 84.21%)。

结论

本研究提出的 ML 模型可用作临床决策支持工具,有助于医生对 COVID-19 的诊断进行临床判断。

相似文献

1
Detection of COVID-19 by Machine Learning Using Routine Laboratory Tests.
Am J Clin Pathol. 2022 May 4;157(5):758-766. doi: 10.1093/ajcp/aqab187.
3
Classification Models for COVID-19 Test Prioritization in Brazil: Machine Learning Approach.
J Med Internet Res. 2021 Apr 8;23(4):e27293. doi: 10.2196/27293.
5
Comparing different machine learning techniques for predicting COVID-19 severity.
Infect Dis Poverty. 2022 Feb 17;11(1):19. doi: 10.1186/s40249-022-00946-4.
9
Computational Intelligence-Based Model for Mortality Rate Prediction in COVID-19 Patients.
Int J Environ Res Public Health. 2021 Jun 14;18(12):6429. doi: 10.3390/ijerph18126429.
10
Prediction of death status on the course of treatment in SARS-COV-2 patients with deep learning and machine learning methods.
Comput Methods Programs Biomed. 2021 Apr;201:105951. doi: 10.1016/j.cmpb.2021.105951. Epub 2021 Jan 22.

引用本文的文献

1
Usability assessments in clinical decision support systems.
North Clin Istanb. 2025 Jun 19;12(3):372-377. doi: 10.14744/nci.2024.22316. eCollection 2025.
3
TubIAgnosis: A machine learning-based web application for active tuberculosis diagnosis using complete blood count data.
Digit Health. 2024 Aug 30;10:20552076241278211. doi: 10.1177/20552076241278211. eCollection 2024 Jan-Dec.
5
Clinical decision support systems (CDSS) in assistance to COVID-19 diagnosis: A scoping review on types and evaluation methods.
Health Sci Rep. 2024 Feb 20;7(2):e1919. doi: 10.1002/hsr2.1919. eCollection 2024 Feb.
6
Concordance and generalization of an AI algorithm with real-world clinical data in the pre-omicron and omicron era.
Heliyon. 2024 Feb 2;10(3):e25410. doi: 10.1016/j.heliyon.2024.e25410. eCollection 2024 Feb 15.
9
Computational method for aromatase-related proteins using machine learning approach.
PLoS One. 2023 Mar 29;18(3):e0283567. doi: 10.1371/journal.pone.0283567. eCollection 2023.
10
Outcome prediction in hospitalized COVID-19 patients: Comparison of the performance of five severity scores.
Front Med (Lausanne). 2023 Feb 8;10:1121465. doi: 10.3389/fmed.2023.1121465. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验