Suppr超能文献

基于计算智能的 COVID-19 患者死亡率预测模型。

Computational Intelligence-Based Model for Mortality Rate Prediction in COVID-19 Patients.

机构信息

Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.

出版信息

Int J Environ Res Public Health. 2021 Jun 14;18(12):6429. doi: 10.3390/ijerph18126429.

Abstract

The COVID-19 outbreak is currently one of the biggest challenges facing countries around the world. Millions of people have lost their lives due to COVID-19. Therefore, the accurate early detection and identification of severe COVID-19 cases can reduce the mortality rate and the likelihood of further complications. Machine Learning (ML) and Deep Learning (DL) models have been shown to be effective in the detection and diagnosis of several diseases, including COVID-19. This study used ML algorithms, such as Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and K-Nearest Neighbor (KNN) and DL model (containing six layers with ReLU and output layer with sigmoid activation), to predict the mortality rate in COVID-19 cases. Models were trained using confirmed COVID-19 patients from 146 countries. Comparative analysis was performed among ML and DL models using a reduced feature set. The best results were achieved using the proposed DL model, with an accuracy of 0.97. Experimental results reveal the significance of the proposed model over the baseline study in the literature with the reduced feature set.

摘要

目前,COVID-19 疫情是全球各国面临的最大挑战之一。数以百万计的人因 COVID-19 而失去生命。因此,准确地早期检测和识别重症 COVID-19 病例可以降低死亡率和进一步并发症的可能性。机器学习 (ML) 和深度学习 (DL) 模型已被证明在包括 COVID-19 在内的多种疾病的检测和诊断中是有效的。本研究使用了 ML 算法,如决策树 (DT)、逻辑回归 (LR)、随机森林 (RF)、极端梯度提升 (XGBoost) 和 K-最近邻 (KNN) 以及 DL 模型(包含 6 个具有 ReLU 和输出层的 sigmoid 激活的层),来预测 COVID-19 病例的死亡率。模型使用来自 146 个国家的确诊 COVID-19 患者进行训练。使用简化特征集对 ML 和 DL 模型进行了比较分析。使用所提出的 DL 模型获得了最佳结果,准确率为 0.97。实验结果表明,与文献中的基线研究相比,所提出的简化特征集模型具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a32c/8296243/8df0b5d69f64/ijerph-18-06429-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验