Suppr超能文献

基于计算智能的 COVID-19 患者死亡率预测模型。

Computational Intelligence-Based Model for Mortality Rate Prediction in COVID-19 Patients.

机构信息

Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.

出版信息

Int J Environ Res Public Health. 2021 Jun 14;18(12):6429. doi: 10.3390/ijerph18126429.

Abstract

The COVID-19 outbreak is currently one of the biggest challenges facing countries around the world. Millions of people have lost their lives due to COVID-19. Therefore, the accurate early detection and identification of severe COVID-19 cases can reduce the mortality rate and the likelihood of further complications. Machine Learning (ML) and Deep Learning (DL) models have been shown to be effective in the detection and diagnosis of several diseases, including COVID-19. This study used ML algorithms, such as Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and K-Nearest Neighbor (KNN) and DL model (containing six layers with ReLU and output layer with sigmoid activation), to predict the mortality rate in COVID-19 cases. Models were trained using confirmed COVID-19 patients from 146 countries. Comparative analysis was performed among ML and DL models using a reduced feature set. The best results were achieved using the proposed DL model, with an accuracy of 0.97. Experimental results reveal the significance of the proposed model over the baseline study in the literature with the reduced feature set.

摘要

目前,COVID-19 疫情是全球各国面临的最大挑战之一。数以百万计的人因 COVID-19 而失去生命。因此,准确地早期检测和识别重症 COVID-19 病例可以降低死亡率和进一步并发症的可能性。机器学习 (ML) 和深度学习 (DL) 模型已被证明在包括 COVID-19 在内的多种疾病的检测和诊断中是有效的。本研究使用了 ML 算法,如决策树 (DT)、逻辑回归 (LR)、随机森林 (RF)、极端梯度提升 (XGBoost) 和 K-最近邻 (KNN) 以及 DL 模型(包含 6 个具有 ReLU 和输出层的 sigmoid 激活的层),来预测 COVID-19 病例的死亡率。模型使用来自 146 个国家的确诊 COVID-19 患者进行训练。使用简化特征集对 ML 和 DL 模型进行了比较分析。使用所提出的 DL 模型获得了最佳结果,准确率为 0.97。实验结果表明,与文献中的基线研究相比,所提出的简化特征集模型具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a32c/8296243/8df0b5d69f64/ijerph-18-06429-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验