Suppr超能文献

利用仅有的基础临床数据开发机器学习模型,以预测流感样症状患者的严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)实时聚合酶链反应(RT-PCR)结果。

Development of machine learning models to predict RT-PCR results for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients with influenza-like symptoms using only basic clinical data.

机构信息

Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy.

Department of Anaesthesia and Intensive Care Medicine, Niguarda Ca' Granda, Milan, Italy.

出版信息

Scand J Trauma Resusc Emerg Med. 2020 Dec 1;28(1):113. doi: 10.1186/s13049-020-00808-8.

Abstract

BACKGROUND

Reverse Transcription-Polymerase Chain Reaction (RT-PCR) for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) diagnosis currently requires quite a long time span. A quicker and more efficient diagnostic tool in emergency departments could improve management during this global crisis. Our main goal was assessing the accuracy of artificial intelligence in predicting the results of RT-PCR for SARS-COV-2, using basic information at hand in all emergency departments.

METHODS

This is a retrospective study carried out between February 22, 2020 and March 16, 2020 in one of the main hospitals in Milan, Italy. We screened for eligibility all patients admitted with influenza-like symptoms tested for SARS-COV-2. Patients under 12 years old and patients in whom the leukocyte formula was not performed in the ED were excluded. Input data through artificial intelligence were made up of a combination of clinical, radiological and routine laboratory data upon hospital admission. Different Machine Learning algorithms available on WEKA data mining software and on Semeion Research Centre depository were trained using both the Training and Testing and the K-fold cross-validation protocol.

RESULTS

Among 199 patients subject to study (median [interquartile range] age 65 [46-78] years; 127 [63.8%] men), 124 [62.3%] resulted positive to SARS-COV-2. The best Machine Learning System reached an accuracy of 91.4% with 94.1% sensitivity and 88.7% specificity.

CONCLUSION

Our study suggests that properly trained artificial intelligence algorithms may be able to predict correct results in RT-PCR for SARS-COV-2, using basic clinical data. If confirmed, on a larger-scale study, this approach could have important clinical and organizational implications.

摘要

背景

逆转录-聚合酶链反应(RT-PCR)检测严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)目前需要相当长的时间。在这个全球危机期间,急诊部门更快、更有效的诊断工具可以改善管理。我们的主要目标是评估人工智能在使用急诊部门现有基本信息预测 SARS-CoV-2 RT-PCR 结果方面的准确性。

方法

这是一项在意大利米兰的一家主要医院进行的回顾性研究,时间为 2020 年 2 月 22 日至 3 月 16 日。我们筛选了所有因流感样症状接受 SARS-CoV-2 检测的入院患者,以确定其是否符合入选标准。排除年龄小于 12 岁和在急诊未行白细胞计数的患者。人工智能输入数据由入院时的临床、放射学和常规实验室数据组合而成。WEKA 数据挖掘软件和 Semeion 研究中心存储库中提供的不同机器学习算法使用训练和测试以及 K 折交叉验证协议进行了训练。

结果

在 199 名研究对象中(中位数[四分位数范围]年龄为 65[46-78]岁;127[63.8%]为男性),124 名[62.3%]检测出 SARS-CoV-2 阳性。最佳机器学习系统的准确率为 91.4%,灵敏度为 94.1%,特异性为 88.7%。

结论

我们的研究表明,使用基本的临床数据,经过适当训练的人工智能算法可能能够预测 SARS-CoV-2 RT-PCR 的正确结果。如果在更大规模的研究中得到证实,这种方法可能具有重要的临床和组织意义。

相似文献

4
Rapid identification of SARS-CoV-2-infected patients at the emergency department using routine testing.
Clin Chem Lab Med. 2020 Jun 29;58(9):1587-1593. doi: 10.1515/cclm-2020-0593. Print 2020 Aug 27.
6
Routine Laboratory Blood Tests Predict SARS-CoV-2 Infection Using Machine Learning.
Clin Chem. 2020 Nov 1;66(11):1396-1404. doi: 10.1093/clinchem/hvaa200.
10
Learning From Past Respiratory Infections to Predict COVID-19 Outcomes: Retrospective Study.
J Med Internet Res. 2021 Feb 22;23(2):e23026. doi: 10.2196/23026.

引用本文的文献

3
A comprehensive review of COVID-19 detection with machine learning and deep learning techniques.
Health Technol (Berl). 2023 Jun 7:1-14. doi: 10.1007/s12553-023-00757-z.
4
Graph data science and machine learning for the detection of COVID-19 infection from symptoms.
PeerJ Comput Sci. 2023 Apr 10;9:e1333. doi: 10.7717/peerj-cs.1333. eCollection 2023.
5
A Survey of COVID-19 Diagnosis Using Routine Blood Tests with the Aid of Artificial Intelligence Techniques.
Diagnostics (Basel). 2023 May 16;13(10):1749. doi: 10.3390/diagnostics13101749.
7
A literature review on the analysis of symptom-based clinical pathways: Time for a different approach?
PLOS Digit Health. 2022 May 26;1(5):e0000042. doi: 10.1371/journal.pdig.0000042. eCollection 2022 May.
8
Machine learning for the prediction of preclinical airway management in injured patients: a registry-based trial.
Clin Exp Emerg Med. 2022 Dec;9(4):304-313. doi: 10.15441/ceem.22.335. Epub 2022 Nov 23.
9
Extending artificial intelligence research in the clinical domain: a theoretical perspective.
Ann Oper Res. 2022 Nov 8:1-32. doi: 10.1007/s10479-022-05035-1.
10
Selective Electrochemical Detection of SARS-CoV-2 Using Deep Learning.
Viruses. 2022 Aug 30;14(9):1930. doi: 10.3390/v14091930.

本文引用的文献

1
Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study.
Lancet Respir Med. 2020 Dec;8(12):1201-1208. doi: 10.1016/S2213-2600(20)30370-2. Epub 2020 Aug 27.
2
Risk Factors Associated With Mortality Among Patients With COVID-19 in Intensive Care Units in Lombardy, Italy.
JAMA Intern Med. 2020 Oct 1;180(10):1345-1355. doi: 10.1001/jamainternmed.2020.3539.
3
Artificial intelligence-enabled rapid diagnosis of patients with COVID-19.
Nat Med. 2020 Aug;26(8):1224-1228. doi: 10.1038/s41591-020-0931-3. Epub 2020 May 19.
6
Clinical features and treatment of COVID-19 patients in northeast Chongqing.
J Med Virol. 2020 Jul;92(7):797-806. doi: 10.1002/jmv.25783. Epub 2020 Apr 1.
7
Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19).
Clin Infect Dis. 2020 Jul 28;71(15):778-785. doi: 10.1093/cid/ciaa310.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验