Suppr超能文献

转录因子 bZIP21 的磷酸化由 MAP 激酶 MPK6-3 增强,从而促进香蕉果实成熟。

Phosphorylation of transcription factor bZIP21 by MAP kinase MPK6-3 enhances banana fruit ripening.

机构信息

State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education/Guangdong Laboratory of Lingnan Modern Agriculture, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China.

Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.

出版信息

Plant Physiol. 2022 Mar 4;188(3):1665-1685. doi: 10.1093/plphys/kiab539.

Abstract

Ripening of fleshy fruits involves both diverse post-translational modifications (PTMs) and dynamic transcriptional reprogramming, but the interconnection between PTMs, such as protein phosphorylation and transcriptional regulation, in fruit ripening remains to be deciphered. Here, we conducted a phosphoproteomic analysis during banana (Musa acuminata) ripening and identified 63 unique phosphopeptides corresponding to 49 proteins. Among them, a Musa acuminata basic leucine zipper transcription factor21 (MabZIP21) displayed elevated phosphorylation level in the ripening stage. MabZIP21 transcript and phosphorylation abundance increased during banana ripening. Genome-wide MabZIP21 DNA binding assays revealed MabZIP21-regulated functional genes contributing to banana ripening, and electrophoretic mobility shift assay, chromatin immunoprecipitation coupled with quantitative polymerase chain reaction, and dual-luciferase reporter analyses demonstrated that MabZIP21 stimulates the transcription of a subset of ripening-related genes via directly binding to their promoters. Moreover, MabZIP21 can be phosphorylated by MaMPK6-3, which plays a role in banana ripening, and T318 and S436 are important phosphorylation sites. Protein phosphorylation enhanced MabZIP21-mediated transcriptional activation ability, and transient overexpression of the phosphomimetic form of MabZIP21 accelerated banana fruit ripening. Additionally, MabZIP21 enlarges its role in transcriptional regulation by activating the transcription of both MaMPK6-3 and itself. Taken together, this study reveals an important machinery of protein phosphorylation in banana fruit ripening in which MabZIP21 is a component of the complex phosphorylation pathway linking the upstream signal mediated by MaMPK6-3 with transcriptional controlling of a subset of ripening-associated genes.

摘要

肉质果实的成熟过程涉及多种翻译后修饰(PTMs)和动态转录重编程,但果实成熟过程中 PTMs 与转录调控之间的相互联系仍有待阐明。在这里,我们在香蕉(Musa acuminata)成熟过程中进行了磷酸蛋白质组学分析,鉴定出 63 个对应于 49 种蛋白质的独特磷酸肽。其中,Musa acuminata 碱性亮氨酸拉链转录因子 21(MabZIP21)在成熟阶段表现出较高的磷酸化水平。MabZIP21 的转录本和磷酸化丰度在香蕉成熟过程中增加。全基因组 MabZIP21 DNA 结合分析显示,MabZIP21 调控了参与香蕉成熟的功能基因,电泳迁移率变动分析、染色质免疫沉淀结合定量聚合酶链反应和双荧光素酶报告分析表明,MabZIP21 通过直接结合其启动子来刺激一部分成熟相关基因的转录。此外,MabZIP21 可以被 MaMPK6-3 磷酸化,MaMPK6-3 在香蕉成熟过程中发挥作用,T318 和 S436 是重要的磷酸化位点。蛋白质磷酸化增强了 MabZIP21 介导的转录激活能力,过表达 MabZIP21 的磷酸化模拟形式加速了香蕉果实的成熟。此外,MabZIP21 通过激活 MaMPK6-3 和自身的转录,扩大了其在转录调控中的作用。总之,本研究揭示了香蕉果实成熟过程中蛋白质磷酸化的一个重要机制,其中 MabZIP21 是 MaMPK6-3 介导的上游信号与一组成熟相关基因转录调控之间复杂磷酸化途径的组成部分。

相似文献

1
Phosphorylation of transcription factor bZIP21 by MAP kinase MPK6-3 enhances banana fruit ripening.
Plant Physiol. 2022 Mar 4;188(3):1665-1685. doi: 10.1093/plphys/kiab539.
2
Banana MKK1 modulates fruit ripening via the MKK1-MPK6-3/11-4-bZIP21 module.
Cell Rep. 2023 Aug 29;42(8):112832. doi: 10.1016/j.celrep.2023.112832. Epub 2023 Jul 25.
3
Banana MaBZR1/2 associate with MaMPK14 to modulate cell wall modifying genes during fruit ripening.
Plant Cell Rep. 2020 Jan;39(1):35-46. doi: 10.1007/s00299-019-02471-5. Epub 2019 Sep 9.
4
Banana MaSPL16 Modulates Carotenoid Biosynthesis during Fruit Ripening through Activating the Transcription of Lycopene β-Cyclase Genes.
J Agric Food Chem. 2020 Feb 5;68(5):1286-1296. doi: 10.1021/acs.jafc.9b07134. Epub 2020 Jan 24.
5
A ripening-induced transcription factor MaBSD1 interacts with promoters of MaEXP1/2 from banana fruit.
Plant Cell Rep. 2014 Nov;33(11):1913-20. doi: 10.1007/s00299-014-1668-6. Epub 2014 Aug 6.
6
Phosphorylated bZIPs are ripe for discovery.
Plant Physiol. 2022 Mar 4;188(3):1415-1416. doi: 10.1093/plphys/kiab596.

引用本文的文献

1
Integrative multi-omics analysis unravels chitosan-mediated delay of mango fruit ripening through hormonal and metabolic reprogramming.
Food Chem (Oxf). 2025 Aug 5;11:100281. doi: 10.1016/j.fochms.2025.100281. eCollection 2025 Dec.
3
Shaping the future of bananas: advancing genetic trait regulation and breeding in the postgenomics era.
Hortic Res. 2025 Feb 12;12(5):uhaf044. doi: 10.1093/hr/uhaf044. eCollection 2025 May.
5
Transcriptome profiling reveals the mechanism of fruit navel development in melon (Cucumis melo L.).
BMC Plant Biol. 2025 Apr 3;25(1):420. doi: 10.1186/s12870-025-06444-7.
6
Phosphorylation of the strawberry MADS-box CMB1 regulates ripening via the catabolism of abscisic acid.
New Phytol. 2025 May;246(4):1627-1646. doi: 10.1111/nph.70065. Epub 2025 Apr 2.
7
Recent advances and future directions in banana molecular biology and breeding.
Mol Hortic. 2024 Dec 2;4(1):42. doi: 10.1186/s43897-024-00122-2.
8
LcMPK3 and LcMPK6 positively regulate fruitlet abscission in litchi.
Mol Hortic. 2024 Aug 6;4(1):29. doi: 10.1186/s43897-024-00109-z.

本文引用的文献

1
Molecular and Hormonal Mechanisms Regulating Fleshy Fruit Ripening.
Cells. 2021 May 8;10(5):1136. doi: 10.3390/cells10051136.
3
Regulation Mechanisms of Plant Basic Leucine Zippers to Various Abiotic Stresses.
Front Plant Sci. 2020 Aug 20;11:1258. doi: 10.3389/fpls.2020.01258. eCollection 2020.
4
Deciphering transcriptional regulators of banana fruit ripening by regulatory network analysis.
Plant Biotechnol J. 2021 Mar;19(3):477-489. doi: 10.1111/pbi.13477. Epub 2020 Oct 7.
5
Regulatory network of fruit ripening: current understanding and future challenges.
New Phytol. 2020 Nov;228(4):1219-1226. doi: 10.1111/nph.16822. Epub 2020 Aug 14.
6
MaXB3 Modulates MaNAC2, MaACS1, and MaACO1 Stability to Repress Ethylene Biosynthesis during Banana Fruit Ripening.
Plant Physiol. 2020 Oct;184(2):1153-1171. doi: 10.1104/pp.20.00313. Epub 2020 Jul 21.
7
Fruit development and epigenetic modifications.
New Phytol. 2020 Nov;228(3):839-844. doi: 10.1111/nph.16724. Epub 2020 Jul 13.
9
Mass-spectrometry-based draft of the Arabidopsis proteome.
Nature. 2020 Mar;579(7799):409-414. doi: 10.1038/s41586-020-2094-2. Epub 2020 Mar 11.
10
GsSnRK1 interplays with transcription factor GsERF7 from wild soybean to regulate soybean stress resistance.
Plant Cell Environ. 2020 May;43(5):1192-1211. doi: 10.1111/pce.13726. Epub 2020 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验