Suppr超能文献

飞秒激光解吸/电离质谱与飞行时间二次离子质谱成像技术在探测地质样品中埋藏生物标志物的比较。

Femtosecond Laser Desorption Postionization MS vs ToF-SIMS Imaging for Uncovering Biomarkers Buried in Geological Samples.

机构信息

University of Illinois Chicago, Chemistry (MC 111), Chicago, Illinois 60607, United States.

University of Illinois Chicago, Earth & Environmental Sciences (MC 186), Chicago, Illinois 60607, United States.

出版信息

Anal Chem. 2021 Dec 7;93(48):15949-15957. doi: 10.1021/acs.analchem.1c03275. Epub 2021 Nov 18.

Abstract

The study of lipid molecular fossils by traditional biomarker analysis requires bulk sample crushing, followed by solvent extraction, and then the analysis of the extract by gas chromatography-mass spectrometry (GC-MS). This traditional analysis mixes all organic compounds in the sample regardless of their origins, with a loss of information on the spatial distribution of organic molecules within the sample. These shortcomings can be overcome using the chemical mapping of intact samples. Spectroscopic techniques such as UV fluorescence or Raman spectroscopy, laser ablation inductively coupled plasma mass spectrometry, and time-of-flight secondary ion mass spectrometry (ToF-SIMS) are among those elemental and molecular mapping techniques. This study employed femtosecond (fs) laser ablation combined with single-photon ionization, a method called fs-laser desorption postionization mass spectrometry (fs-LDPI-MS). A pulsed ∼75 fs, 800 nm laser was used to ablate the geological sample, which was then photoionized after a few microseconds by a pulsed 7.9 eV vacuum ultraviolet laser. An organic carbon-rich geological sample was used for this study to map hydrocarbon biomarkers in sediments that were previously studied by GC-MS. The petrography of this sample was examined by optical and fluorescence microscopy. It is demonstrated here that fs-LDPI-MS combined with petrography for multimodal imaging can expose buried compounds within the sample via layer removal. When used in conjunction with traditional organic geochemical analysis, this method has the potential to determine the spatial distribution of organic biomarkers in geological material. Finally, fs-LDPI-MS imaging data are compared with ToF-SIMS imaging that is commonly used for such studies.

摘要

通过传统的生物标志物分析研究脂质分子化石,需要对大块样品进行粉碎,然后进行溶剂萃取,再对提取物进行气相色谱-质谱联用(GC-MS)分析。这种传统分析方法将样品中的所有有机化合物混合在一起,而忽略了样品中有机分子的空间分布信息。这些缺点可以通过对完整样品的化学绘图来克服。用于元素和分子绘图的技术包括紫外荧光或拉曼光谱、激光烧蚀电感耦合等离子体质谱和飞行时间二次离子质谱(ToF-SIMS)等。本研究采用飞秒(fs)激光烧蚀与单光子电离相结合的方法,即 fs 激光解吸后电离质谱(fs-LDPI-MS)。使用脉冲 ∼75 fs、800 nm 的激光烧蚀地质样品,几微秒后用脉冲 7.9 eV 真空紫外激光进行光解电离。本研究使用富含有机碳的地质样品来绘制以前通过 GC-MS 研究过的沉积物中碳氢化合物生物标志物的地图。通过光学和荧光显微镜检查了该样品的岩相。这里证明了 fs-LDPI-MS 与岩相学相结合的多模式成像可以通过逐层去除来暴露样品中的埋藏化合物。当与传统的有机地球化学分析结合使用时,该方法有可能确定地质材料中有机生物标志物的空间分布。最后,将 fs-LDPI-MS 成像数据与常用于此类研究的 ToF-SIMS 成像数据进行了比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验