Suppr超能文献

相似文献

1
Interspecies transcriptomics identify genes that underlie disproportionate foot growth in jerboas.
Curr Biol. 2022 Jan 24;32(2):289-303.e6. doi: 10.1016/j.cub.2021.10.063. Epub 2021 Nov 17.
2
The lesser Egyptian jerboa, Jaculus jaculus: a unique rodent model for evolution and development.
Cold Spring Harb Protoc. 2011 Dec 1;2011(12):1451-6. doi: 10.1101/pdb.emo066704.
3
Metatarsal fusion resisted bending as jerboas (Dipodidae) transitioned from quadrupedal to bipedal.
Proc Biol Sci. 2022 Oct 12;289(1984):20221322. doi: 10.1098/rspb.2022.1322. Epub 2022 Oct 5.
4
Gene expression differences associated with intrinsic hindfoot muscle loss in the jerboa, Jaculus jaculus.
J Exp Zool B Mol Dev Evol. 2024 Nov;342(7):453-464. doi: 10.1002/jez.b.23268. Epub 2024 Jul 1.
5
Husbandry and breeding of the lesser Egyptian Jerboa, Jaculus jaculus.
Cold Spring Harb Protoc. 2011 Dec 1;2011(12):1457-61. doi: 10.1101/pdb.prot066712.
7
Genomic insights into adaptation to bipedal saltation and desert-like habitats of jerboas.
Sci China Life Sci. 2024 Sep;67(9):2003-2015. doi: 10.1007/s11427-023-2516-9. Epub 2024 Jun 14.
9
The developmental order of bipedal locomotion in the jerboa (Jaculus orientalis): pivoting, creeping, quadrupedalism, and bipedalism.
Dev Psychobiol. 1997 Sep;31(2):137-42. doi: 10.1002/(sici)1098-2302(199709)31:2<137::aid-dev6>3.0.co;2-l.

引用本文的文献

3
Adapting to change: insights from new organisms in cell and developmental biology.
Development. 2024 Oct 15;151(20). doi: 10.1242/dev.204389. Epub 2024 Oct 14.
5
The genetic architecture and evolution of the human skeletal form.
Science. 2023 Jul 21;381(6655):eadf8009. doi: 10.1126/science.adf8009.
6
The genetic architecture of the human skeletal form.
bioRxiv. 2023 Jan 3:2023.01.03.521284. doi: 10.1101/2023.01.03.521284.
7

本文引用的文献

1
Secondary ossification center induces and protects growth plate structure.
Elife. 2020 Oct 16;9:e55212. doi: 10.7554/eLife.55212.
4
Wnt-signaling in skeletal development.
Curr Top Dev Biol. 2019;133:235-279. doi: 10.1016/bs.ctdb.2018.11.010. Epub 2018 Dec 26.
5
Circadian production of melatonin in cartilage modifies rhythmic gene expression.
J Endocrinol. 2019 May;241(2):161-173. doi: 10.1530/JOE-19-0022.
6
NGmerge: merging paired-end reads via novel empirically-derived models of sequencing errors.
BMC Bioinformatics. 2018 Dec 20;19(1):536. doi: 10.1186/s12859-018-2579-2.
7
Large-scale investigation of the reasons why potentially important genes are ignored.
PLoS Biol. 2018 Sep 18;16(9):e2006643. doi: 10.1371/journal.pbio.2006643. eCollection 2018 Sep.
8
Differential aging of growth plate cartilage underlies differences in bone length and thus helps determine skeletal proportions.
PLoS Biol. 2018 Jul 23;16(7):e2005263. doi: 10.1371/journal.pbio.2005263. eCollection 2018 Jul.
9
A genomics approach reveals insights into the importance of gene losses for mammalian adaptations.
Nat Commun. 2018 Mar 23;9(1):1215. doi: 10.1038/s41467-018-03667-1.
10
Enhancer redundancy provides phenotypic robustness in mammalian development.
Nature. 2018 Feb 8;554(7691):239-243. doi: 10.1038/nature25461. Epub 2018 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验