Suppr超能文献

颈椎节段的生物力学分析作为研究人类颈部功能和动态解剖学的方法。

Biomechanical analysis of the cervical spine segment as a method for studying the functional and dynamic anatomy of the human neck.

机构信息

Saint Petersburg Electrotechnical University "LETI", Department of Bioengineering Systems, St. Petersburg, Russia.

Moscow Region State University, Moscow, Russia.

出版信息

Ann Anat. 2022 Feb;240:151856. doi: 10.1016/j.aanat.2021.151856. Epub 2021 Nov 16.

Abstract

BACKGROUND

Traditionally, dynamic and functional anatomy, in particular the dynamic anatomy of the neck, is studied on cadaveric material. However, the development of in vivo visualization technologies and in silico modeling has made it possible to expand these possibilities. Despite significant progress in the study of dynamic and functional anatomy of the neck by means of in silico methods, the issues of validating the developed models and taking into account the pronounced nonlinearity of soft tissues as well as local anisotropy remain open. The aim of this study was to develop a virtual dynamic anatomical model of the human neck and reproduce the dynamic processes in the cervical spine from this model using the finite element method.

MATERIALS AND METHODS

Reverse engineering was used to generate a dynamic anatomical model of the neck from CT data (both male, 24 and 22 years old). Two segments of the cervical spine (C3-C5, C2-T1) were isolated from the resulting model for finite element analysis. Finite element mesh generation and contact interactions were performed using the HyperMesh software (Altair Engineering Inc, Troy, Michigan, USA). The anisotropic hyperelastic Holzapfel-Gasser-Ogden model was used to describe the material behavior of the fibrous rings of the disc. Material modeling and finite element analysis were performed using Abaqus CAE 6.14 software (Simulia, Johnston, Rhode Island, USA).

RESULTS

A technique for creating a virtual dynamic anatomical model of the neck was elaborated and implemented. The model includes 79 major anatomical structures of the neck segmented from radiological data. A finite element analysis of the cervical spine was performed. The results of finite element analysis of the C3-C5 segment under axial load were compared with in vitro data. The proposed model shows nonlinear deformation of the disc under static loading; the model predicted displacement values agree well with the experimental ones. The displacement of the С3-С5 central vertebra with an axial load of 800 N reaches a value of 0.65 mm. For the segment C2-T1, data on intradiscal pressure, stress plots and displacements during flexion were obtained. The maximum stress value of 10.036 MPa is observed in the C3-C4 disc.

CONCLUSION

Simulation results using the proposed methodology are in good agreement with experimental data. The generated biomechanical models allow describing dynamic phenomena in the cervical spine and obtaining a wide range of quantitative properties of anatomical objects, which are otherwise inaccessible to classical methods for studying dynamic and functional anatomy.

摘要

背景

传统上,动态和功能解剖学,特别是颈部的动态解剖学,是在尸体材料上进行研究的。然而,体内可视化技术和计算机建模的发展使得这些可能性得到了扩展。尽管通过计算机方法在研究颈部的动态和功能解剖学方面取得了重大进展,但开发的模型的验证以及考虑软组织的显著非线性和局部各向异性等问题仍然存在。本研究的目的是开发一个人类颈部的虚拟动态解剖模型,并使用有限元法从该模型中再现颈椎的动态过程。

材料和方法

使用反向工程从 CT 数据(均为男性,24 岁和 22 岁)生成颈部的动态解剖模型。从生成的模型中分离出两个颈椎节段(C3-C5、C2-T1)进行有限元分析。使用 HyperMesh 软件(Altair Engineering Inc,密歇根州特洛伊)进行有限元网格生成和接触相互作用。使用各向异性超弹性 Holzapfel-Gasser-Ogden 模型来描述椎间盘纤维环的材料行为。使用 Abaqus CAE 6.14 软件(Simulia,罗德岛州约翰斯顿)进行材料建模和有限元分析。

结果

制定并实施了一种创建颈部虚拟动态解剖模型的技术。该模型包括从放射学数据中分割出的颈部 79 个主要解剖结构。对颈椎进行了有限元分析。将 C3-C5 节段在轴向载荷下的有限元分析结果与体外数据进行了比较。所提出的模型显示了椎间盘在静态载荷下的非线性变形;模型预测的位移值与实验值吻合良好。在 800N 的轴向载荷下,C3-C5 中央椎体的位移达到 0.65mm。对于 C2-T1 节段,获得了弯曲过程中的椎间盘内压力、应力图和位移数据。在 C3-C4 椎间盘处观察到 10.036MPa 的最大应力值。

结论

使用所提出的方法进行的模拟结果与实验数据吻合良好。生成的生物力学模型允许描述颈椎中的动态现象,并获得解剖物体的广泛定量特性,而这些特性是传统的动态和功能解剖学研究方法无法获得的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验