Küster Felix, Brinker Sascha, Lounis Samir, Parkin Stuart S P, Sessi Paolo
Max Planck Institute of Microstructure Physics, Halle, 06120, Germany.
Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich & JARA, Jülich, D-52425, Germany.
Nat Commun. 2021 Nov 18;12(1):6722. doi: 10.1038/s41467-021-26802-x.
Interfacing magnetism with superconducting condensates is rapidly emerging as a viable route for the development of innovative quantum technologies. In this context, the development of rational design strategies to controllably tune the interaction between magnetic moments is crucial. Here we address this problem demonstrating the possibility of tuning the interaction between local spins coupled through a superconducting condensate with atomic scale precision. By using Cr atoms coupled to superconducting Nb, we use atomic manipulation techniques to precisely control the relative distance between local spins along distinct crystallographic directions while simultaneously sensing their coupling by scanning tunneling spectroscopy. Our results reveal the existence of highly anisotropic interactions, lasting up to very long distances, demonstrating the possibility of crossing a quantum phase transition by acting on the direction and interatomic distance between spins. The high tunability provides novel opportunities for the realization of topological superconductivity and the rational design of magneto-superconducting interfaces.
将磁性与超导凝聚体相结合,正迅速成为发展创新量子技术的一条可行途径。在这种背景下,开发合理的设计策略以可控地调节磁矩之间的相互作用至关重要。在此,我们通过展示以原子尺度精度调节通过超导凝聚体耦合的局域自旋之间相互作用的可能性来解决这一问题。通过使用与超导铌耦合的铬原子,我们利用原子操纵技术精确控制沿不同晶体学方向的局域自旋之间的相对距离,同时通过扫描隧道谱来探测它们的耦合。我们的结果揭示了存在高度各向异性的相互作用,这种相互作用可持续到非常长的距离,证明了通过作用于自旋之间的方向和原子间距离来跨越量子相变的可能性。这种高可调性为实现拓扑超导和磁超导界面的合理设计提供了新机遇。