Suppr超能文献

操控表面上耦合自旋-1/2原子的本征态。

Engineering the Eigenstates of Coupled Spin-1/2 Atoms on a Surface.

作者信息

Yang Kai, Bae Yujeong, Paul William, Natterer Fabian D, Willke Philip, Lado Jose L, Ferrón Alejandro, Choi Taeyoung, Fernández-Rossier Joaquín, Heinrich Andreas J, Lutz Christopher P

机构信息

IBM Almaden Research Center, San Jose, California 95120, USA.

Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea.

出版信息

Phys Rev Lett. 2017 Dec 1;119(22):227206. doi: 10.1103/PhysRevLett.119.227206. Epub 2017 Nov 29.

Abstract

Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1/2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1/2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1/2 atoms on surfaces.

摘要

具有工程化几何结构和相互作用的量子自旋网络因其在量子模拟以及探索诸如自旋液体等新兴量子现象方面的应用而备受追捧。自旋1/2中心尤其令人期待,因为它们很容易表现出相干量子涨落。在此,我们介绍一种由氧化镁表面的钛原子构成的可控自旋1/2结构。我们利用扫描隧道显微镜(STM)通过原子精度定位来定制自旋相互作用,随后对单个原子进行电子自旋共振,以驱动耦合自旋系统进入和离开量子本征态。原子间的相互作用在从高度各向异性的偶极耦合到强交换耦合的一系列距离范围内进行映射。磁性STM针尖的局部磁场用于精确调节一对自旋的叠加态。对自旋 - 自旋相互作用的精确控制以及通过寻址单个自旋来探测耦合自旋网络状态的能力,将有助于探索基于表面自旋1/2原子网络的量子多体系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验