Suppr超能文献

一种用于下肢康复外骨骼步态阶段分类的多信息融合方法。

A Multi-Information Fusion Method for Gait Phase Classification in Lower Limb Rehabilitation Exoskeleton.

作者信息

Zhang Yuepeng, Cao Guangzhong, Ling Ziqin, Li WenZhou, Cheng Haoran, He Binbin, Cao Shengbin, Zhu Aibin

机构信息

Guangdong Key Laboratory of Electromagnetic Control and Intelligent Robots, Shenzhen University, Shenzhen, China.

Institute of Robotics and Intelligent Systems, Xi'an Jiaotong University, Xi'an, China.

出版信息

Front Neurorobot. 2021 Oct 29;15:692539. doi: 10.3389/fnbot.2021.692539. eCollection 2021.

Abstract

Gait phase classification is important for rehabilitation training in patients with lower extremity motor dysfunction. Classification accuracy of the gait phase also directly affects the effect and rehabilitation training cycle. In this article, a multiple information (multi-information) fusion method for gait phase classification in lower limb rehabilitation exoskeleton is proposed to improve the classification accuracy. The advantage of this method is that a multi-information acquisition system is constructed, and a variety of information directly related to gait movement is synchronously collected. Multi-information includes the surface electromyography (sEMG) signals of the human lower limb during the gait movement, the angle information of the knee joints, and the plantar pressure information. The acquired multi-information is processed and input into a modified convolutional neural network (CNN) model to classify the gait phase. The experiment of gait phase classification with multi-information is carried out under different speed conditions, and the experiment is analyzed to obtain higher accuracy. At the same time, the gait phase classification results of multi-information and single information are compared. The experimental results verify the effectiveness of the multi-information fusion method. In addition, the delay time of each sensor and model classification time is measured, which shows that the system has tremendous real-time performance.

摘要

步态阶段分类对于下肢运动功能障碍患者的康复训练至关重要。步态阶段的分类准确率也直接影响康复训练的效果和周期。本文提出了一种用于下肢康复外骨骼中步态阶段分类的多信息融合方法,以提高分类准确率。该方法的优点是构建了一个多信息采集系统,同步采集与步态运动直接相关的多种信息。多信息包括步态运动过程中人体下肢的表面肌电(sEMG)信号、膝关节的角度信息以及足底压力信息。将采集到的多信息进行处理并输入到改进的卷积神经网络(CNN)模型中对步态阶段进行分类。在不同速度条件下进行多信息步态阶段分类实验,并对实验进行分析以获得更高的准确率。同时,比较了多信息和单信息的步态阶段分类结果。实验结果验证了多信息融合方法的有效性。此外,测量了每个传感器的延迟时间和模型分类时间,结果表明该系统具有良好的实时性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验