Suppr超能文献

检测过量和不足处方-一种无监督机器学习方法。

Detection of overdose and underdose prescriptions-An unsupervised machine learning approach.

机构信息

Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan.

Department of Pharmacy, Fukuoka Tokushukai Hospital, Fukuoka, Japan.

出版信息

PLoS One. 2021 Nov 19;16(11):e0260315. doi: 10.1371/journal.pone.0260315. eCollection 2021.

Abstract

Overdose prescription errors sometimes cause serious life-threatening adverse drug events, while underdose errors lead to diminished therapeutic effects. Therefore, it is important to detect and prevent these errors. In the present study, we used the one-class support vector machine (OCSVM), one of the most common unsupervised machine learning algorithms for anomaly detection, to identify overdose and underdose prescriptions. We extracted prescription data from electronic health records in Kyushu University Hospital between January 1, 2014 and December 31, 2019. We constructed an OCSVM model for each of the 21 candidate drugs using three features: age, weight, and dose. Clinical overdose and underdose prescriptions, which were identified and rectified by pharmacists before administration, were collected. Synthetic overdose and underdose prescriptions were created using the maximum and minimum doses, defined by drug labels or the UpToDate database. We applied these prescription data to the OCSVM model and evaluated its detection performance. We also performed comparative analysis with other unsupervised outlier detection algorithms (local outlier factor, isolation forest, and robust covariance). Twenty-seven out of 31 clinical overdose and underdose prescriptions (87.1%) were detected as abnormal by the model. The constructed OCSVM models showed high performance for detecting synthetic overdose prescriptions (precision 0.986, recall 0.964, and F-measure 0.973) and synthetic underdose prescriptions (precision 0.980, recall 0.794, and F-measure 0.839). In comparative analysis, OCSVM showed the best performance. Our models detected the majority of clinical overdose and underdose prescriptions and demonstrated high performance in synthetic data analysis. OCSVM models, constructed using features such as age, weight, and dose, are useful for detecting overdose and underdose prescriptions.

摘要

用药过量或不足的处方错误有时会导致严重的危及生命的药物不良反应,而用药不足的错误则会导致治疗效果减弱。因此,检测和预防这些错误非常重要。在本研究中,我们使用了一种最常见的无监督机器学习算法——单类支持向量机(OCSVM),来识别用药过量和不足的处方。我们从九州大学医院的电子病历中提取了 2014 年 1 月 1 日至 2019 年 12 月 31 日期间的处方数据。我们使用年龄、体重和剂量这三个特征为 21 种候选药物中的每一种构建了一个 OCSVM 模型。临床用药过量和不足的处方是由药剂师在给药前发现并纠正的。我们使用药物标签或 UpToDate 数据库定义的最大和最小剂量创建了合成的用药过量和不足的处方。我们将这些处方数据应用于 OCSVM 模型,并评估其检测性能。我们还与其他无监督异常检测算法(局部离群因子、孤立森林和稳健协方差)进行了比较分析。模型检测到 31 份临床用药过量和不足处方中的 27 份(87.1%)为异常。所构建的 OCSVM 模型对合成用药过量处方(精度 0.986、召回率 0.964 和 F1 分数 0.973)和合成用药不足处方(精度 0.980、召回率 0.794 和 F1 分数 0.839)具有较高的检测性能。在比较分析中,OCSVM 表现出最佳性能。我们的模型检测到了大多数临床用药过量和不足的处方,并且在合成数据分析中表现出了较高的性能。使用年龄、体重和剂量等特征构建的 OCSVM 模型有助于检测用药过量和不足的处方。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6864/8604308/c282852c8966/pone.0260315.g001.jpg

相似文献

1
Detection of overdose and underdose prescriptions-An unsupervised machine learning approach.
PLoS One. 2021 Nov 19;16(11):e0260315. doi: 10.1371/journal.pone.0260315. eCollection 2021.
2
DDC-Outlier: Preventing Medication Errors Using Unsupervised Learning.
IEEE J Biomed Health Inform. 2019 Mar;23(2):874-881. doi: 10.1109/JBHI.2018.2828028. Epub 2018 Apr 17.
5
Computer calculated dose in paediatric prescribing.
Drug Saf. 2005;28(9):817-24. doi: 10.2165/00002018-200528090-00006.
7
Patterns and history of prescription drug use among opioid-related drug overdose cases in British Columbia, Canada, 2015-2016.
Drug Alcohol Depend. 2019 Jan 1;194:151-158. doi: 10.1016/j.drugalcdep.2018.09.019. Epub 2018 Oct 25.
8
Statistical monitoring of a wastewater treatment plant: A case study.
J Environ Manage. 2018 Oct 1;223:807-814. doi: 10.1016/j.jenvman.2018.06.087. Epub 2018 Jul 5.
9
Using Controlled Substance Receipt Patterns to Predict Prescription Overdose Death.
Pharmacology. 2018;101(3-4):140-147. doi: 10.1159/000484667. Epub 2017 Dec 14.
10
Predicting Opioid Overdose Deaths Using Prescription Drug Monitoring Program Data.
Am J Prev Med. 2019 Dec;57(6):e211-e217. doi: 10.1016/j.amepre.2019.07.026.

引用本文的文献

1
2
Recent Applications of Artificial Intelligence and Related Technical Challenges in MALDI MS and MALDI-MSI: A Mini Review.
Mass Spectrom (Tokyo). 2025;14(1):A0175. doi: 10.5702/massspectrometry.A0175. Epub 2025 Jun 18.
5
Artificial intelligence in the field of pharmacy practice: A literature review.
Explor Res Clin Soc Pharm. 2023 Oct 21;12:100346. doi: 10.1016/j.rcsop.2023.100346. eCollection 2023 Dec.
6
A digital physician peer to automatically detect erroneous prescriptions in radiotherapy.
NPJ Digit Med. 2022 Oct 21;5(1):158. doi: 10.1038/s41746-022-00703-9.
7
Detecting Unusual Intravenous Infusion Alerting Patterns with Machine Learning Algorithms.
Biomed Instrum Technol. 2022 Apr 1;56(2):58-70. doi: 10.2345/0899-8205-56.2.58.

本文引用的文献

2
Using a Machine Learning System to Identify and Prevent Medication Prescribing Errors: A Clinical and Cost Analysis Evaluation.
Jt Comm J Qual Patient Saf. 2020 Jan;46(1):3-10. doi: 10.1016/j.jcjq.2019.09.008. Epub 2019 Nov 27.
3
Averting Alert Fatigue to Prevent Adverse Drug Reactions.
JAMA. 2019 Aug 20;322(7):601. doi: 10.1001/jama.2019.11710.
5
DDC-Outlier: Preventing Medication Errors Using Unsupervised Learning.
IEEE J Biomed Health Inform. 2019 Mar;23(2):874-881. doi: 10.1109/JBHI.2018.2828028. Epub 2018 Apr 17.
7
Medication-related clinical decision support alert overrides in inpatients.
J Am Med Inform Assoc. 2018 May 1;25(5):476-481. doi: 10.1093/jamia/ocx115.
8
The third global patient safety challenge: tackling medication-related harm.
Bull World Health Organ. 2017 Aug 1;95(8):546-546A. doi: 10.2471/BLT.17.198002.
10
Screening for medication errors using an outlier detection system.
J Am Med Inform Assoc. 2017 Mar 1;24(2):281-287. doi: 10.1093/jamia/ocw171.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验