Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan.
Department of Pharmacy, Fukuoka Tokushukai Hospital, Fukuoka, Japan.
PLoS One. 2021 Nov 19;16(11):e0260315. doi: 10.1371/journal.pone.0260315. eCollection 2021.
Overdose prescription errors sometimes cause serious life-threatening adverse drug events, while underdose errors lead to diminished therapeutic effects. Therefore, it is important to detect and prevent these errors. In the present study, we used the one-class support vector machine (OCSVM), one of the most common unsupervised machine learning algorithms for anomaly detection, to identify overdose and underdose prescriptions. We extracted prescription data from electronic health records in Kyushu University Hospital between January 1, 2014 and December 31, 2019. We constructed an OCSVM model for each of the 21 candidate drugs using three features: age, weight, and dose. Clinical overdose and underdose prescriptions, which were identified and rectified by pharmacists before administration, were collected. Synthetic overdose and underdose prescriptions were created using the maximum and minimum doses, defined by drug labels or the UpToDate database. We applied these prescription data to the OCSVM model and evaluated its detection performance. We also performed comparative analysis with other unsupervised outlier detection algorithms (local outlier factor, isolation forest, and robust covariance). Twenty-seven out of 31 clinical overdose and underdose prescriptions (87.1%) were detected as abnormal by the model. The constructed OCSVM models showed high performance for detecting synthetic overdose prescriptions (precision 0.986, recall 0.964, and F-measure 0.973) and synthetic underdose prescriptions (precision 0.980, recall 0.794, and F-measure 0.839). In comparative analysis, OCSVM showed the best performance. Our models detected the majority of clinical overdose and underdose prescriptions and demonstrated high performance in synthetic data analysis. OCSVM models, constructed using features such as age, weight, and dose, are useful for detecting overdose and underdose prescriptions.
用药过量或不足的处方错误有时会导致严重的危及生命的药物不良反应,而用药不足的错误则会导致治疗效果减弱。因此,检测和预防这些错误非常重要。在本研究中,我们使用了一种最常见的无监督机器学习算法——单类支持向量机(OCSVM),来识别用药过量和不足的处方。我们从九州大学医院的电子病历中提取了 2014 年 1 月 1 日至 2019 年 12 月 31 日期间的处方数据。我们使用年龄、体重和剂量这三个特征为 21 种候选药物中的每一种构建了一个 OCSVM 模型。临床用药过量和不足的处方是由药剂师在给药前发现并纠正的。我们使用药物标签或 UpToDate 数据库定义的最大和最小剂量创建了合成的用药过量和不足的处方。我们将这些处方数据应用于 OCSVM 模型,并评估其检测性能。我们还与其他无监督异常检测算法(局部离群因子、孤立森林和稳健协方差)进行了比较分析。模型检测到 31 份临床用药过量和不足处方中的 27 份(87.1%)为异常。所构建的 OCSVM 模型对合成用药过量处方(精度 0.986、召回率 0.964 和 F1 分数 0.973)和合成用药不足处方(精度 0.980、召回率 0.794 和 F1 分数 0.839)具有较高的检测性能。在比较分析中,OCSVM 表现出最佳性能。我们的模型检测到了大多数临床用药过量和不足的处方,并且在合成数据分析中表现出了较高的性能。使用年龄、体重和剂量等特征构建的 OCSVM 模型有助于检测用药过量和不足的处方。