Suppr超能文献

基于时间深度学习的电子健康记录预测阿片类药物处方患者的阿片类药物过量风险。

Predicting opioid overdose risk of patients with opioid prescriptions using electronic health records based on temporal deep learning.

机构信息

Department of Computer Science, Stony Brook University, Stony Brook, NY, United States.

Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, United States.

出版信息

J Biomed Inform. 2021 Apr;116:103725. doi: 10.1016/j.jbi.2021.103725. Epub 2021 Mar 9.

Abstract

The US is experiencing an opioid epidemic, and opioid overdose is causing more than 100 deaths per day. Early identification of patients at high risk of Opioid Overdose (OD) can help to make targeted preventative interventions. We aim to build a deep learning model that can predict the patients at high risk for opioid overdose and identify most relevant features. The study included the information of 5,231,614 patients from the Health Facts database with at least one opioid prescription between January 1, 2008 and December 31, 2017. Potential predictors (n = 1185) were extracted to build a feature matrix for prediction. Long Short-Term Memory (LSTM) based models were built to predict overdose risk in the next hospital visit. Prediction performance was compared with other machine learning methods assessed using machine learning metrics. Our sequential deep learning models built upon LSTM outperformed the other methods on opioid overdose prediction. LSTM with attention mechanism achieved the highest F-1 score (F-1 score: 0.7815, AUCROC: 0.8449). The model is also able to reveal top ranked predictive features by permutation important method, including medications and vital signs. This study demonstrates that a temporal deep learning based predictive model can achieve promising results on identifying risk of opioid overdose of patients using the history of electronic health records. It provides an alternative informatics-based approach to improving clinical decision support for possible early detection and intervention to reduce opioid overdose.

摘要

美国正经历阿片类药物流行,阿片类药物过量导致每天超过 100 人死亡。早期识别阿片类药物过量(OD)高危患者有助于进行有针对性的预防干预。我们旨在构建一个可以预测阿片类药物过量高危患者并识别最相关特征的深度学习模型。该研究纳入了 2008 年 1 月 1 日至 2017 年 12 月 31 日期间 Health Facts 数据库中至少有一次阿片类药物处方的 5231614 名患者的信息。提取潜在预测因素(n=1185)以构建预测特征矩阵。基于长短期记忆(LSTM)的模型用于预测下一次就诊时的药物过量风险。使用机器学习指标评估了预测性能,并与其他机器学习方法进行了比较。我们基于 LSTM 构建的顺序深度学习模型在阿片类药物过量预测方面优于其他方法。具有注意力机制的 LSTM 实现了最高的 F1 评分(F1 评分:0.7815,AUCROC:0.8449)。该模型还可以通过置换重要性方法揭示排名靠前的预测特征,包括药物和生命体征。这项研究表明,基于时间的深度学习预测模型可以使用电子健康记录的历史记录,在识别阿片类药物过量患者的风险方面取得有希望的结果。它提供了一种基于信息学的替代方法,以改善临床决策支持,可能实现早期检测和干预,从而减少阿片类药物过量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验